Search for dark matter production in association with a single top and a W boson with the ATLAS experiment

Alvaro Lopez Solis Summarising work from Ben Brueers, Paul Moder, Claudia Seitz, Priscilla Pani and Marco Rimoldi

> *Pizza day!* 20th February 2023

ATLAS

RESEARCH FOR GRAND CHALLENGES

HELMHOLT7

Why dark matter?

Powerful evidence indicating the existence of weakly interacting non-luminous particles in the Universe

 μK

-300

2

300

Where to find it ? Is it big or small?

What is DM? How can we detect it ?

DM couples to SM ? -> We can see it at colliders ! ($pp \rightarrow$ SM + DM)

Many theories predicting DM + SM interactions. ATLAS DM searches widely use simplified models.

Assuming a interaction between dark matter and SM particles through mediators (either SM or new).

<u>Phys.Dark.Univ Vol 27.</u> 100351

2HDM+a models

Simplified model with an extended 2HDM Higgs sector

Assuming a Dirac fermion χ with a WIMP mass in dark sector.

Connection between dark sector and SM+2HDM though a pseudo-scalar mediator (*a*) mixed with CP-odd Higgs (*A*)

Important params for pheno:

- Masses: m_{H-,A,H} ma, mχ,
- Couplings: g
- sinθ (mixing angle between A and a)
- $tan\beta$ (= vu/vd)

Phys.Dark.Univ Vol 27, 100351

2HDM+a models interest

- Simplest renormalizable theory with a single DM candidate.
- Unitarity.
- Rich phenomenology in several final states at colliders.

Single-top quark production and Dark Matter

s-channel

Negligible contributions

t-channel

Subdominant production mode of single-top quark in association to dark matter in 2HDM+a model

Single-top quark production and Dark Matter

8

Single-top quark production and Dark Matter

Cross-section presenting two maxima. At low tan β and at high tan β (~[20,30])

Analysis strategy at a glance

Signals present one top, a W-boson and large missing transverse momentum

- Trigger events based on E_T^{miss}
- Profit of the top quark and W-quark to reduce significantly the background

BR(t -> bW) ~ 99% and BR(W->qq') ~ 67% / BR(W->lv) ~

Analysis strategy: the zero-lepton channel

OL channel: 0 leptons, jets, 1 b-jet and high E_{τ}^{miss} .

- Potential important backgrounds:
 - Z+jets, W+jets, single-top
 - Semileptonic ttbar with one lepton missing.

ATLAS-EXOT-2021-01

W-tagging

The zero-lepton channel

W-tagging

Requirement of at least presenting a W-tagged large-R jet in the event. \rightarrow reduce V+jets and semi-leptonic tt. Build m(b,W) and Δ R(b,W) using the leading W-tagged jet and the leading large-R jet.

The zero-lepton channel

W-tagging

Requirement of at least presenting a W-tagged large-R jet in the event \rightarrow reduce V+jets and semi-leptonic tt. Build m(b,W) and Δ R(b,W) using the leading W-tagged jet and the leading large-R jet.

The zero-lepton channel

E_{T}^{miss} variables

High E_{τ}^{miss} and high E_{τ}^{miss} significance allow to reduce considerably the background. Bin in E_{τ}^{miss} the regions $m_{\tau}(b, E_{\tau}^{miss})$ has an endpoint for some ttbar events but not signal.

Analysis strategy: the one-lepton channel

1L: 1 lepton, jets, 1 b-jet and high E_{T}^{miss} .

- Potentially important backgrounds:
 - W+jets, single-top.
 - Semileptonic tt.
 - Dileptonic tt with one lepton missing

The one-lepton channel

Categorise events depending on what W-boson decays leptonically: hadronic and leptonic top.

• Interest: W-tagging can be applied to events with leptonic top.

Split SRs using m(b,j): invariant mass of leading b-jet and light-jet.

The one-lepton channel: leptonic top

Reduce the semileptonic ttbar contamination by requiring $m_T(I_{ep}, E_T^{miss}) > 130$ GeV and high E_T^{miss} significance Remaining ttbar is dileptonic -> W-tagging

The one-lepton channel: leptonic top

Reduce the semileptonic ttbar contamination by requiring $m_T(I_{ep}, E_T^{miss}) > 130$ GeV and high E_T^{miss} significance Remaining ttbar is dileptonic -> W-tagging

The one-lepton channel: hadronic top

Remove semileptonic ttbar using $m_{\tau}(I_{ep}, E_{\tau}^{miss}) > 200$ GeV. Remaining ttbar is dileptonic and W+jets. Use asymmetric stransverse mass <u>R.Mahbubani et al.</u>

- Stransverse mass from SUSY to pseudo-reconstruct particles decaying to visible particles and neutralinos
- Useful in cases where signals contain a pair of particles decaying into MET and visible particles.

The one-lepton channel: hadronic top

Remove semileptonic ttbar using $m_{\tau}(I_{ep}, E_{\tau}^{miss}) > 200$ GeV. Remaining ttbar is dileptonic and W+jets. Use asymmetric stransverse mass <u>R.Mahbubani et al.</u>

- Stransverse mass from SUSY to pseudo-reconstruct particles decaying to visible particles and neutralinos
- Useful in cases where signals contain a pair of particles decaying into MET and visible particles.

22

Analysis strategy: the two-lepton channel

23

The two-lepton channel

Using variables separating dileptonic ttbar from single top m_{T2} , m_{bl}^{min} and m_{bl}^{t} -> Endpoints for SM tt and single-top.

Removing the Z-mass peak (m_{\parallel} in [71,111] GeV)

The two-lepton channel

Using variables separating dileptonic ttbar from single top m_{T2} , m_{bl}^{min} and m_{bl}^{t} -> Endpoints for SM tt and single-top.

Removing the Z-mass peak (m_{\parallel} in [71,111] GeV)

24

Background estimation

Defining control and validation regions close to the SRs to normalize the most important backgrounds.

OL and 1L channels:

- Common CRs for Z+jets, W+jets, single-top and ttZ.
- ttbar normalized separately for OL and 1L regions.

2L channel:

- CRs for tt and ttZ
- Additional control region for WZ

Variable	SR	CR(tt)	CR(tīZ)	CR(WZ)	VR(tī)	$VR(3\ell)$	
$N_{\ell}^{\rm signal}$	= 2	= 2	= 3	= 3	= 2	= 3	
t.	(OS)	(OS)	$(\geq 1 \text{ SFOS})$	$(\geq 1 \text{ SFOS})$	(OS)	$(\geq 1 \text{ SFOS})$	
$p_{\rm T}(\ell_3)$ [GeV]	-	-	> 20	> 20	-	> 20	
$m_{ee/\mu\mu}$ [GeV]	∉ [71, 111]	∉ [71, 111]	∈ [71, 111]	\in [71, 111]	∉ [71, 111]	\in [71, 111]	
N _{jet}	≥ 1	≥ 1	≥ 3	∈ [1,3]	≥ 1	≥ 1	
N _{b-jet}	≥ 1	≥ 1	≥ 1	= 1	≥ 1	≥ 1	
			$(\geq 2 \text{ if } N_{\text{jet}} = 3)$				
$m_{b\ell}^{\min}$ [GeV]	< 170	< 170	< 170	> 170	< 170	varies	
$m_{b\ell}^{t}$ [GeV]	> 150	< 150	-	-	> 150	_	
m_{T2} [GeV]	> 130	$\in [40, 80]$	> 90	> 90	$\in [40, 80]$	> 90	
$\Delta \phi_{\min}$ [rad]	> 1.1	> 1.1			> 1.1	-	

Background-only fit results

- Simultaneous of all the SRs and CRs of the 0L+1L. Result of 2L in previous ATLAS paper with 1L+2L.
- No DM evidence observed. 2 σ excess observed in 2L and 2.5 σ deficit in one bin of the 0L channel.

OL+1L combined fit

Uncertainties

- OL and 1L regions dominated by the theory and detector uncertainties
 - OL by W-tagging and ttbar and Z+jets theory uncertainties
 - 1L by small-R jets and W+jets theory uncertainties.
- 2L channel dominated by detector uncertainties -> Mainly jet energy scale and b-tagging uncertainties

Interpretation of 2HDM+a limits

Free parameters of the model : m_{H^+} , m_a , m_χ , tan β (= vu/vd), sin θ (a-A mixing).

Final interpretation combining OL and 1L channels with 2L from previous analysis in tW+DM. Exclusion at high tan β due to process $\sigma \times B$ evolution

Conclusion

Dark matter is one of current open questions in Particle Physics

Dark matter models used at LHC predict observable signals of dark matter in single-top final states

• 2HDM+a models predict a significant contribution on $tW+E_{\tau}^{miss}$ final states

Performed a search for single-top production in association to dark matter in tW+E_{τ}^{miss} final states.

Sensitivity increased for ATLAS tW+ E_{τ}^{miss} final states.

But unfortunately no dark matter has been observed in this analysis

LHC Run-3 started. New and exciting results await us. Stay tuned !

