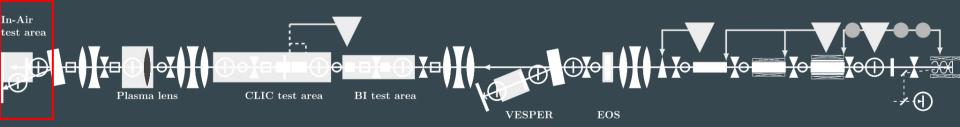
Development of Real-Time VHEE Dosimetry at UHDR Using Beam Instrumentation

 $\bullet \bullet \bullet$

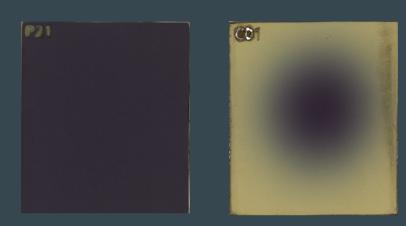
Vilde Rieker - University of Oslo and CERN



Very High Energy Electron Radiotherapy Conference (VHEE23), July 11th - 13th 2023, DESY, Hamburg #1

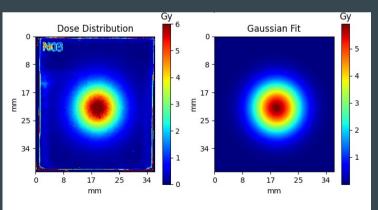
CLEAR: CERN Linear Electron Accelerator for Research

- User facility detached from
- 60-200 MeV electrons
- 10 pC 70 nC / train
- 0.833 Hz or 10 Hz rep. freq
- Train length 1 ps 50 ns

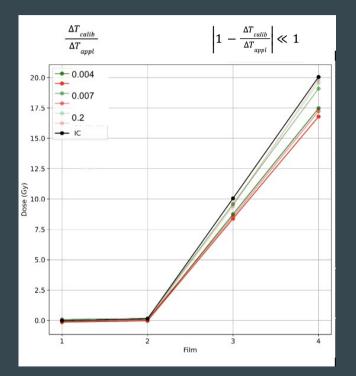

How are we working with dosimetry at CLEAR?

- Challenge: real-time dosimetry for UHDR VHEE and FLASH RT
 - Ionization chamber saturation at high dose per pulse
 - Requirements: High time-resolution and a wide dynamic range
- Two separate but complementary approaches
 - Optical and scintillating fibers (Joseph John Bateman, Oxford/CERN)
 - Beam instrumentation for real-time information about transverse beam distribution and charge
- Films as main tool for correlation
 - Assumed to be energy and dose-rate independent
 - High spatial resolution -> information about beam size and transverse dose distribution
 - A big effort in establishing a well adapted and reliable film dosimetry protocol at CLEAR

Film Dosimetry


- Film batches calibrated at eRT6 (CHUV)
 - 5.5 MeV electrons
 - 1 cm solid water and uniform dose-distribution
 - Referenced against Advanced Markus chamber
- Cut and engraved using a laser cutter
 - Size standardization for irradiation and processing
 - Limits layer detachment
- Scanned using a flatbed photo scanner
 - Well-defined standard scanning position and orientation
 - Five "warm-up" scans then single scan per film
- Custom scripts developed for film analysis
 - Single channel (green or red) used for dose evaluation
 - Conversion from pixel value to optical density
 - Background subtraction (unexposed film)
 - Gaussian fitting algorithms for beam size evaluation

V. Rieker et al. Development of Reliable VHEE/FLASH Passive Dosimetry Methods and Procedures at CLEAR, IPAC23



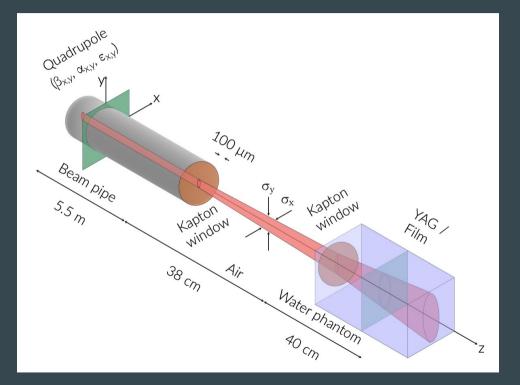
Calibration

Application

Lessons learned...

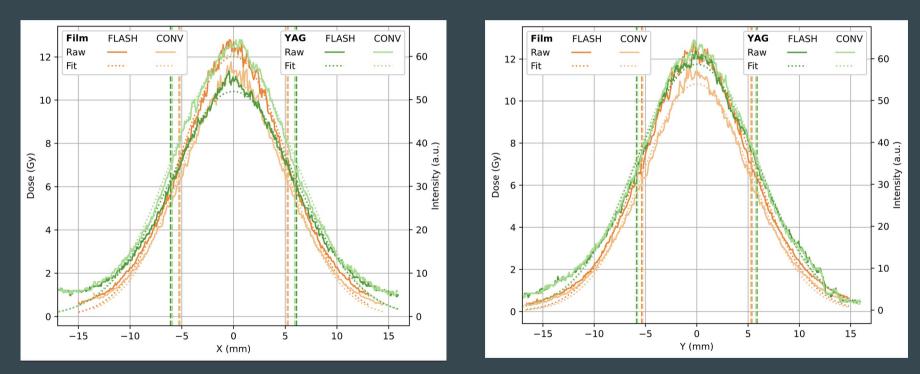
Key take aways:

1. There is no full standard protocol which is feasible for every application: tradeoff between accuracy and time

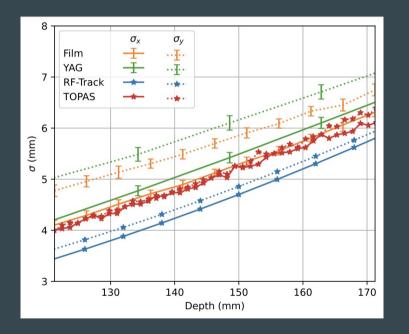

2. Ensure the processing steps are identical for your calibration and application films and you'll most likely be fine.

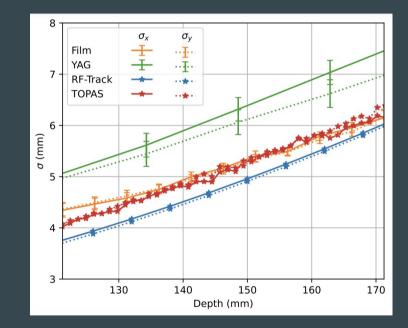
) <u>cleār</u>

V. Rieker, VHEE23, July 11th - 13th 2023, DESY, Hamburg


Experimental Setup

¹ V. Rieker, VHEE23, July 11th - 13th 2023, DESY, Hamburg


Beam Size Evaluation



UNIVERSITY OF OSLO V. Rieker, VHEE23, July 11th - 13th 2023, DESY, Hamburg

Beam Size Evaluation



10 nC CONV

UNIVERSITY OF OSLO

Cle

V. Rieker, VHEE23, July 11th - 13th 2023, DESY, Hamburg

There is still stuff to do...

- Bridging the gap between the beam size on the YAG and on the films
 - YAG saturation?
 - Screen thickness
 - YAG VS OTR
 - Sensitivity to secondaries
 - Cherenkov radiation in water
- Statistics on a large and diverse set of film-data correlated with beam parameters
- Possible energy and dose-rate dependence of films?
 - Little data exist in the VHEE UHDR regime
 - Correlations with RPL dosimeters, alanine pellets and TLDs
- ΔT dependent film calibration for increased accuracy and flexibility

Acknowledgements

- Supervisors: Roberto Corsini, Steinar Stapnes, Erik Adli
- CLEAR operation team
- CERN IdeaSquare
- CHUV
- Collaborators at CERN, UiO and external users

