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Introduction

Abstain from all forms of harassment,
abuse, intimidation, bullying and
mistreatment of any kind.

Maintain a professional environment in an
atmosphere of tolerance and 
mutual respect. 

Keep in mind that behaviour and language
deemed acceptable to one person 
may not be to another.

Help our community adhere to the code of
conduct and speak up when you see
possible violations.

IT'S EVERYONE'S RESPONSIBILITY TO:

KNOW THE 

CODE OF CONDUCT

HTTP://CERN.CH/GO/D9BT

This includes intimidation, sexual or crude
jokes or comments, offensive images, 
and unwelcome physical conduct.
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Introduction

✔ In this presentation/exercises:
Monte Carlo methods.

Basic principles for Monte Carlo event simulation.

✘ Not in this presentation/exercises:
How to run a given Monte Carlo event generator.

Implementation of physics processes in Monte Carlo generators.

 Main sources for the exercises:
[A] Hannes Jung, Terascale Summer School 2020

[B] Patrick L.S. Connor, Monte Carlo School 2022

� Further reading:
[1] Statistical Methods for Data Analysis in Particle Physics, by Luca Lista.

[2] General-purpose event generators for LHC physics, A. Buckley et al. 1101.2599

[3] Clickable links and references on slides.
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Introduction

 All the material:
https://gitlab.cern.ch/cms-podas23/topical/mc-techniques

We will alternate theory and hands-on exercises.
Interruptions for questions are necessary ⌣.
All the exercises are based on ROOT (guidance for quick setup in the above link).

WorkflowTemplates 
&

Solutions

Step-by-step 
guidance

Templates 
       &
Solutions

Excercises C++
Excercises Jupyter

Excercises Python
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https://gitlab.cern.ch/cms-podas23/topical/mc-techniques
https://gitlab.cern.ch/cms-podas23/topical/mc-techniques/-/tree/master/exercises_cpp
https://gitlab.cern.ch/cms-podas23/topical/mc-techniques/-/tree/master/exercises_juNotebooks
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Random Number Generators

Monte Carlo method
Numerical technique which makes use of sequences of random numbers
and relies on probability statistics to solve a problem.

Random Number Generators
1 True Random Number Generator (TRNG): random numbers obtained from

unpredictable processes e.g quantum physics, radioactive decay.
2 Pseudo Random Number Generator (PRNG): random numbers generated on a

computer according to some algorithm are not really random → pseudo-random
numbers (deterministic, reproducible).

✓ Several statistical (serial test, gap test etc.) and practical (period, correlation etc.)
criteria can be applied to assess the quality of random number generators (to be
discussed in Exercise #1). Further reading:

The Art of Computer Programming (Vol. 2), by Donald E. Knuth.

A review of pseudorandom number generators, F. James
10.1016/0010-4655(90)90032-V
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Random Number Generators

PRNGs
Uniform: sequences of uniformly distributed numbers ranging in a
specific interval (addressed in Exercise #1).

Non-uniform: starting from uniformly distributed random numbers
and using various algorithms (addressed in Exercise #2).

List of PRNGs : Wikipedia PRNGs

Linear Congruential Generator (LCG)
One of the oldest and best-known PRNGs commonly used in scientific applications
for uniform random number generation.

Random sequence ranging from 0 to m generated based on the recurrence relation:

Ii+1 = (αIi + c)modm (1)

where I0 is called the seed of the sequence, α is called the multiplier, c is the
increment, and m is the modulus.
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Random Number Generators

Implementations for different values of the parameters α, c and m are widely used
in various languages/packages/libraries. See for example: Wikipedia LCGs

TRandom base class for the random number generation with ROOT.

Exercise #1 - Linear Congruential Generator (LCG)
Describe some desirable properties of a PRNG.

Construct your own LCG based on equation:

Ii+1 = (αIi + c)modm (2)

with I0 = 4711, α = 205, c = 29573 and m = 139968.
U Generated number should be normalized to m to get numbers from 0 to 1.

Check the correlations of 2 generated random numbers from your LCG in a 2D
histogram.

Compare the above result with ROOT’s built-in algorithms:
– RANLUX implemented in TRandom1.
– Tausworthe implemented in TRandom2.
– Mersenne Twister generator implemented in TRandom3.

CMS PO&DAS Monte Carlo techniques October 2023 8 / 32
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Random Number Generators

Exercise #1: Results and discussion
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Random Number Generators
? Question: How to generate a sequence of random numbers distributed according
to an arbitrary distribution (non-uniform)?

 Approach 1: Inversion of the cumulative distribution.

Basics: Probability Density Functions
With x a continuous variable e.g. outcome from an experiment.

Probability to observe a value of x within the interval [x , x + dx ]: f (x)dx
where f (x) is the Probability Density Function (PDF).

Normalization condition:
∫ +∞
−∞ f (x)dx = 1.

Basics: Cumulative Distribution Functions
Probability for the random variable to take on a value ≤ x :

F (x) =

∫ x

−∞
f (x ′)dx ′ (3)

where F (x) is the Cumulative Distribution Function (CDF).

For a random number r uniformly distributed between 0 and 1, the transformed
variable x = F−1(r) is distributed according to f (x).
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Random Number Generators

Example: Exp distribution

PDF: f (x) = λe−λx (x ≥ 0)

CDF: 1 − e−λx (x ≥ 0)

x = − 1
λ
log(1 − r)

PDF CDF

Example: 1/x distribution
PDF: f (x) = 1/x (for x in [xmin, xmax ])

CDF: 1
log xmax

xmin

log x
xmin

x = xmin

(
xmax
xmin

)r
10 20 30 40 50 60 70 80 90 100
3−10

2−10

1−10

1

10

=100max=10, xminx

PDF: 1/x

CDF: log(x/10)

CMS PO&DAS Monte Carlo techniques October 2023 11 / 32



Random Number Generators

Example: Exp distribution

PDF: f (x) = λe−λx (x ≥ 0)

CDF: 1 − e−λx (x ≥ 0)

x = − 1
λ
log(1 − r)

PDF CDF

Example: 1/x distribution
PDF: f (x) = 1/x (for x in [xmin, xmax ])

CDF: 1
log xmax

xmin

log x
xmin

x = xmin

(
xmax
xmin

)r
10 20 30 40 50 60 70 80 90 100
3−10

2−10

1−10

1

10

=100max=10, xminx

PDF: 1/x

CDF: log(x/10)

CMS PO&DAS Monte Carlo techniques October 2023 11 / 32



Random Number Generators

 Approach 2: Gaussian generator using the Central Limit Theorem.

Basics: Statistics definitions
For a function f (x) whose PDF is g(x):

– Expectation value (average/population mean):

E[f (x)] = ⟨f (x)⟩ =
∫

f (x)g(x)dx (4)

– Variance:
V[f (x)] = E

[
(f (x)− E[f (x)])2

]
(5)

– Standard deviation:
σf (x) =

√
V[f (x)] (6)

Examples for f (x) = x and g(x) =

– 1/(b − a) (Uniform):
E[x ] = (a+ b)/2, σx = (b − a)/

√
12

– 1√
2πσ2 exp

[
− (x−µ)2

2σ2

]
(Gaussian):

E[x ] = µ, σx = σ
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Random Number Generators

Basics: Central Limit Theorem
Suppose we have N independent random variables xi , each distributed according to a
PDF, having means µi and variances σ2

i . The Central Limit Theorem states that in the
limit of N → ∞, the sum

∑
i xi becomes a Gaussian random variable with mean

∑
i µi

and variance
∑

i σ
2
i , regardless of the underlying PDFs.

[Statistical Data Analysis, by Glen Cowan]

Taken from Wikipedia CLT

Taken from [1].
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Random Number Generators

Exercise #2 - Gaussian random number generator
Construct a Gaussian random number generator from a uniform random number
generator.

U Hints

– For Ri ∈ [0, 1] following a uniform distribution and Rn =
∑

i Ri (see Slide 12):

E[R1] = 1/2, V[R1] = 1/12

E[Rn] = n/2, V[Rn] = n/12

– For a Normal Gaussian distribution (µ = 0, σ = 1) use:

N (0, 1) →
∑

i xi −
∑

i µi√∑
i σ

2
i

→ Rn − n/2√
n/12

– First try with n = 12: N (0, 1) → R12 − 6

– Then you can try for different values of n. Plot all histograms in the same canvas.
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Random Number Generators

Exercise #2: Results and discussion

6− 4− 2− 0 2 4 6
<x>

0
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Uniform to Gauss by increasing sampling size n

nx
n
∑Sampling size 

n = 1
n = 2
n = 12
n = 50

Uniform to Gauss by increasing sampling size n
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Monte Carlo Integration

Why to choose Monte Carlo for integration?
The Monte Carlo estimation accuracy improves as 1/

√
N (addressed in next

slides), irrespective of the dimension D.

Method Error for 1-D Error for N-D
Trapezoidal n−2 n−2/D

Simpson n−4 n−4/D

Gauss n−2m+1 n(−2m+1)/D

Monte Carlo n−1/2 n−1/2

Cross section predictions for pp collisions include the phase space integration:∫
dΦn with dΦn =

n∏
i=1

d3pi
(2π)32Ei

· (2π)4δ(4)(pa + pb −
n∑

i=1

pi ) (7)

– Integral of dimension: 3n − 4 (n final-state particles).
– Three components of momentum per produced particle, minus four

constraints of overall energy-momentum conservation.

Further reading in [2].
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Monte Carlo Integration

Hit-or-miss Monte Carlo
General method be used for:

Random number generation according to some PDF.

Numerical calculation of an integral.

→ Method: Calculation of area below f (x)

1 Generate random numbers x ,y , uniformly
distributed within [xmin, xmax ] and [0, fmax ]
respectively.

2 If y ≤ f (x) (the point is under the curve)
count x as hit n̂.

3 Stop after N trials.

→ The estimation for the area is:

I =

∫ xmax

xmin

f (x)dx ≈ (xmax − xmin)×
n̂

N
fmax (8)

Taken from 10.13140/RG.2.2.24616.47367
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Monte Carlo Integration

Exercise #3 - Approximate the value of π
Use the Hit-or-miss method (as described above) to estimate the value of π, based
on equation:

I = (xmax − xmin)×
n̂

N
fmax (9)

U Hints
– Consider a quadrant with r = 1.

– Generate two random numbers.

– You already know the integral value :)
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Monte Carlo Integration

Exercise #3: Results and discussion
Circle quadrant
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Monte Carlo Integration

The Law of Large Numbers (LLN)
Suppose we repeat an experiment N times and produce outcomes x1, ..., xN ,
where x1, ..., xN are independent random variables with the same underlying
distribution (same population mean µ and standard deviation σ).

The average x̂N of all results (sample mean) is: x̂N = x1, ..., xN
N

= 1
N

∑N
i=1 xi .

Law of Large Numbers: As N increases, the sample mean x̂N converges to the
population mean µ (expected value): N → ∞ ⇒ x̂N → µ.

Example 1. Dice rolls (µ = 3.5) for
N = 1000 (2 repetitions).

Taken from [1]

Example 2. Coin flip (µ = 0.5) for
N = 1000 (9 repetitions).

Taken from Wolfram Demonstrations
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https://demonstrations.wolfram.com/SimulatedCoinTossingExperimentsAndTheLawOfLargeNumbers/


Monte Carlo Integration
? Question: The LLN has a broad validity ranges and various applications, but why
do we mention it here?

 Reminder (Slide 12): expectation value (population mean):

E[f (x)] = ⟨f (x)⟩ =
∫

f (x)g(x)dx (10)

For g(x) the uniform distribution 1/(b − a) and based on the LLN, for N → ∞:

1
N

N∑
i=1

f (xi ) → E[f (x)] = 1
b − a

∫ b

a

f (x)dx (11)

Therefore, using PRNGs we can estimate the value of an integral I =
∫ b

a
f (x)dx as:

I ≈ IMC = (b − a)
1
N

N∑
i=1

f (xi ) (12)

The error in this estimation depends on N and on the variance of f (proof in [A]):

σ2
MC = V[IMC ] =

1
N

(
(b − a)2

N

N∑
i=1

f 2
i − I 2MC

)
(13)
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Monte Carlo Integration

Exercise #4 - MC integration
Write a program which estimates (with Monte Carlo method) the integral:∫ 8

3

1
2x + 1

dx (14)

and the corresponding error in the estimation.

Use different values of N and compare with the nominal integral value which is:
I = 0.443652 (you can calculate it analytically or using the Integral member
function of TF1 class in ROOT).
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Monte Carlo Integration

Exercise #4: Results and discussion
For N = 1000 : IMC = 0.445135 ± 0.003673256
For N = 10000 : IMC = 0.445692 ± 0.001153906
For N = 100000 : IMC = 0.443575 ± 0.000364692
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Monte Carlo Integration

Importance sampling
? Question: What happens if the integrable function f (x) is very peaked?

→ Answer: The error in the estimation of the integral, using the method described
above with uniform random generators, is large. (Why?)

 One approach to improve the accuracy is the importance sampling:

Use an approximate function g(x) such that:

I =

∫ b

a

f (x)dx =

∫ b

a

f (x)

g(x)
g(x)dx = E

[
f (x)

g(x)

]
(15)

which means that the integral corresponds to the expectation value of f /g , if the
values of x are distributed according to the PDF g(x).

IMC and the corresponding error σMC are now given by:

IMC =
1
N

∑ f (xi )

g(xi )
, σ2

MC =
1
N

(
1
N

N∑
i=1

(
fi
gi

)2

− I 2MC

)
(16)
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Monte Carlo Integration

Exercise #5 - Importance sampling

Consider the function f (x) = (1−x)5

x
.

Plot it (TF1) to inspect its shape.

Estimate the integral
∫ 1
xmin

f (x)dx and the error with the same method as in
Exercise #4, for xmin = 0.0001.

Use importance sampling to improve the result:

– Approximate f (x) with g(x) = 1
x

1
log xmax

xmin

, where 1
log xmax

xmin

is just a normalization

factor (you can also plot g(x)).

– The integral estimation is now written as: IMC =
log

(
xmax
xmin

)
N

∑ f (xi )
1
xi

.

U Hint
The random values x (distributed according to g(x)) can be generated from the
uniformly distributed numbers r with*: x = xmin

(
xmax
xmin

)r
.

* Calculated with the method described in Slide 9.
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Monte Carlo Integration

Exercise #5: Results and discussion
I = 6.927507 (Analytically or with Integral function).

IMC = 6.497323 ± 0.255584339 (without importance sampling)

IMC = 6.935575 ± 0.009913379 (with importance sampling)

4−10 3−10 2−10 1−10 1
log(x)
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x
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bln

1 x
1g(x) = 

a
bln5 = (1-x)

g(x)
f(x)
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Physics Application

Basics: Parton Distribution Functions (1/2)
Cross section predictions for pp collisions:

dσ(pp→X ) =
∑
i,j

∫
dxdx ′fi/p (x , µf ) · fj/p

(
x ′, µf

)
× d̂σ(ij→X )

(
x , x ′, µf , µr , αs(µr )

)
(17)

where d̂σ(ij→X ) is calculated using perturbation theory (includes PS integration: Slide
16) and fi/p, fj/p are the Parton Distribution Functions (PDFs) which:

quantify the probability to find a parton i/j with longitudinal momentum fraction
x/x ′ within the proton h at a resolution characterised by the factorisation scale µf .

cannot been calculated perturbatively from first principles.

can be determined in different processes and at different scales µ2
f (universal).

The evolution of PDFs with µ2
f can be calculated with a perturbative treatment using

the DGLAP evolution equations (Further reading in The Review of Particle Physics ):

µ2
f

∂fi/p(x , µ
2
f )

∂µ2
f

=
∑

j={q,q̄,g}

∫ 1

x

dz

z

αs

2π
Pij(z)fj/p(x/z , µ

2
f ) (18)
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Physics Application

Basics: Parton Distribution Functions (2/2)
Once we determine the parton densities at a specific scale, we can predict the
parton densities at any scale using the DGLAP equations.
Online library for PDF evolution: APFEL .

z parton’s momentum ratio before and after splitting.

Pij are the (regularised) splitting functions (known up to N3LO) that describe the
probability of a given parton splitting into two others i → jk (k is fixed by ij).

At LO of αs :

Pqq =
4
3

(
1 + z2

1 − z

)
(19)

Pgq =
4
3

(
1 + (1 − z)2

z

)
(20)

Pqg =
1
2
(
z2 + (1 − z)2

)
(21)

Pgg = 6
(

1 − z

z
+

z

1 − z
+ z(1 − z)

)
(22)
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Physics Application

Basics: Solving DGLAP equations (1/2)
There are several methods to solve integro-differential equations exist either
analytically or numerically.

Today: Monte Carlo method from iterative procedure.

Introduce a new quantity Sudakov form factor:

∆s(t) = exp

(
−
∫ zmax

x

dz

∫ t

t0

αs

2π
dt′

t′
P̂(z)

)
(23)

where P̂ are the unregularised splitting functions.

∆s decribes probability of evolving from scale t0 to scale t without any splitting: a
given particle does not to radiate any secondary particle.

The DGLAP equation (eq. 18) now becomes:

t
∂

∂

f (x , t)

∆s
=

∫ 1

x

dz

z

1
∆s

αs

2π
P(z)f (x/z , t) (24)

Further reading: QCD and Collider Physics, by R.K. Ellis, W.J. Stirling and B.R.
Webber.
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Physics Application

Basics: Solving DGLAP equations (2/2)
The complete solution for f (x , t) using an iterative procedure is:

lim
n→∞

∑
n

1
n!

logn

(
t

t0

)(∫
dz

z
P̂(z)

)n

⊗∆s(t)f (x/z , t0) (25)

Starting function (paths without splittings between scales t0 and t):

f0(x , t) = f (x , t0)∆s(t) (26)
One iteration (paths with one splitting between scales t0 and t):

f1(x , t) = f (x , t0)∆s(t) +
αs

2π

∫ t

t0

dt′

t′
∆(t)

∆(t′)

∫ 1

x

dz

z
∆s(t

′)P̂(z)f (x/z , t0) (27)

Further details in [A].
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Physics Application

Exercise #6 - Sudakov form factor
Using Monte Carlo integration method as in Exercise #4, calculate and plot the
Sudakov form factor as a function of the scale t:

log∆s = −
∫ t2

t1

dt

t

∫ zmax

zmin

dz
αs

2π
P(z) (28)

using:

Different values for the scale: t ∈ [1, 500] GeV2.

Limits for the integral: zmin = 0.01 and zmax = 0.99.

Pgg = 6
(

1−z
z

+ z
1−z

+ z(1 − z)
)

and Pqq = 4
3

(
1+z2

1−z

)
The one-loop level solution for the αs running:
αs(Q) = 1

b0·ln(Q2/Λ2
QCD)

,

with b0 = 33−2nf
12π (nf = 3) and Λ2

QCD = 0.2 GeV2.
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Physics Application

Exercise #6: Results and discussion
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