
Emergent =4 SUSY from =1𝒩 𝒩
MONICA JINWOO KANG

June 12th, 2023

String theory seminar

Based mostly on arXiv:2302.06622 [MJK, Craig Lawrie, Ki-Hong Lee, Jaewon Song]

DESY/University of Hamburg



4d SCFTs
Put a 4d SCFT on a curved manifold: 
➡ The conformal symmetry becomes anomalous and 

characterized by two quantities   central charges   & ⇒ a c

⟨Tμ
μ⟩ =

16π2
WμνρσWμνρσ −

16π2
E4 + ⋯

ac



4d SCFTs
Put a 4d SCFT on a curved manifold: 
➡ The conformal symmetry becomes anomalous and 

characterized by two quantities   central charges   & ⇒ a c

-theorem :   
(  is monotonically decreasing along the RG flow)
a aIR < aUV
a

[Komargodski,Schwimmer]

⟨Tμ
μ⟩ =

16π2
WμνρσWμνρσ −

16π2
E4 + ⋯

acUV Theory

IR Theory

 , aUV cUV

 , aIR cIR

RG flow



4d SCFTs
Put a 4d SCFT on a curved manifold: 
➡ The conformal symmetry becomes anomalous and 

characterized by two quantities   central charges   & ⇒ a c

-theorem :   
(  is monotonically decreasing along the RG flow)
a aIR < aUV
a

[Komargodski,Schwimmer]

 mostly decreases along the flow, 
but not necessarily.
c

⟨Tμ
μ⟩ =

16π2
WμνρσWμνρσ −

16π2
E4 + ⋯

ac



The ratio  is boundeda/c
➡ Unitarity :  

1
3

<
a
c

<
31
18

[Hofman,Maldacena]

Perturb

ℰ

CFT
Scattering event

⟨ℰ( ̂n)⟩ > 0
‣ The  dependence coefficient for̂n

‣ Energy flux through the sphere @infinity:

ℰ ∝ ( c )
If  :   The flux in all direction is the same. 

     The energy/charge propagates isotropically!
a = c

c − a
⃗n



The ratio  is boundeda/c
➡ Unitarity :   

➡ For supersymmetric theories, the bound gets narrower:
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Supersymmetric field theories are highly constraining

‣ Non-renormalization theorems  
‣ Certain protected quantities are exactly computable  
‣ Rich mathematical structures 



Supersymmetric field theories are highly constraining

‣ Traditionally regarded as a high-energy 
symmetry in the UV 

‣ Can arise as an emergent symmetry in the IR 
‣ In fact, learned lot about RG using SUSY

IR duality, conformal manifolds, symmetry enhancement, 
dangerously irrelevant operators, non-commuting flows, …



Emergent Supersymmetry
➡ In two-dimensions, supersymmetry has been shown to emerge in 
the dilute Ising model at the tri-critical point. 
➡ This has been extended to quantum critical points of higher-
dimensional lattice models. 
➡ 4d SYM is suggested to arise from strong-coupling dynamics in 
the low energy limit of a non-supersymmetric gauge theory. 

➡ Found  theories in the  preserving conformal 
manifold of 4d  SYM. 
➡ Supersymmetry can emerge at the edges of a topological 
superconductor, that can be potentially realized experimentally.

𝒩 = 1 𝒩 = 1
𝒩 = 4

[Friedan,Qiu,Shenker’85]

[Lee’06]

[Kaplan’84]

[Grover,Sheng,Vishwanath’13]

[Leigh-Strassler’95]



SUSY enhancement via RG flow
➡ One can begin with minimal supersymmetry and flow to an 
enhanced supersymmetry in the IR. 

➡ Several known cases where an  theory flows to an  
theory. This provides  Lagrangian descriptions for the  
non-Lagrangian theories. 
➡ Not only an interesting phenomenon by itself, but also provides a 
powerful tool to analyze non-perturbative dynamics of the IR fixed 
point. 

➡ Supersymmetry enhancement can be thought of as another 
example of IR duality!

𝒩 = 1 𝒩 = 2
𝒩 = 1 𝒩 = 2

[Gadde,Razamat,Willet][Maruyoshi,Song][Razamat,Zafrir][Zafrir] 

(which often has no Lagrangian description with the full extended supersymmetry manifest)



Construct an  non-Lagrangian theory 
that is dual to the  SYM theory!

𝒩 = 1
𝒩 = 4

Using the RG flow:
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 preserving conformal manifold𝒩 = 1
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This theory has a = c



Construct this  theory with 𝒩 = 1 a = c

[MJK,Lawrie,Lee,Song’21][MJK,Lawrie,Lee,Song’23] 



 theory 𝒟p(G)
➡ A 4d  SCFT of Argyres-Douglas type with a flavor 
symmetry (at least) . 

➡ Class  description:

𝒩 = 2
G

𝒮

[Cecotti,del Zotto][Cecotti,del Zotto,Giacomelli] 
[Xie][Wang,Xie]

Irregular puncture  (parametrized by )p

Regular puncture  (flavor symmetry )G

Extra/enhanced symmetry is due to 
the irregular puncture

Flavor central charge: 

   kG =
2(p − 1)

p
h∨

G

−2Tr(R𝒩=2TaTb) = kGδab

(  if )kG = h∨
G p = 2

behaves as a fractional 
amount of an adjoint matter



The dual theory is built out of 3 copies of ,  
gauging the diagonal flavor symmetry group via  gauge multiplet.

𝒟2(SU(2n + 1))
𝒩 = 1

This gives an asymptotic free gauge theory that flows to a point on the 
conformal manifold of  SYM with .𝒩 = 4 G = SU(2n + 1)

[MJK,Lawrie,Lee,Song’23] 



How do we verify this novel duality?

‣ Matching anomalies  
‣ Matching chiral operators 
‣ Matching superconformal indices



Diagonal gauging

➡ The one-loop -function coefficient for the gauge coupling: 

➡  behaves like a half of an adjoint chiral multiplet in terms 
of one-loop -function contribution: .

β

𝒟2(G)
β Nf = 3/2 Nc

βg ∼ − TrRGG ∼ −
3
2

(2n + 1) < 0
Asymptotically free!

: IR strongly coupled  SCFT IR fixed point→

[MJK,Lawrie,Lee,Song’23] 
[MJK,Lawrie,Lee,Song’21] 
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‣ In the IR, the putative  has an ABJ anomaly  
‣ Broken to the anomaly-free 

U(1)3
F
U(1)2

ℱ

Upon gauging: 
‣ Only the anomaly-free combinations are preserved!

[MJK,Lawrie,Lee,Song’23] 
[MJK,Lawrie,Lee,Song’21] 



 SCFT at the IR fixed point𝒩 = 1
➡ Need: U(1) R-symmetry: 
➡ In a supersymmetric theory, conformal anomalies (i.e. central 
charges) fixed by the trace anomalies of the R-symmetry: 

➡ The R-charge (or mixing parameters ) is determined uniquely 
by  a-maximization: 

➡ Check if the theory is unitary upon RG flow via a-maximization.

ϵi

TrRTaTb = 0 .

[Anselmi,Freedman,Grisaru,Johansen]

a =
3
32 (3TrR3 − TrR), c =

1
32 (9TrR3 − 5TrR) .

[Intriligator,Wecht]
∂a
∂ϵi

= 0,
∂2a
∂ϵiϵj

< 0 .
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Anomaly-free: G × U(1)R × U(1)2
ℱ

where   R = R0 +
3

∑
i=1

ϵiFi

(ℱ1 ≡ F2 − F1, ℱ2 ≡ F3 − F2)

(Anomaly )∼ TrRGG



 SCFT at the IR fixed point𝒩 = 1
➡ The R-symmetry this theory is   
➡ Using the anomaly-free condition, 

➡ Now a-maximization fixes the mixing parameters  : 

➡ The central charges:

ϵi

R = R0 +
3

∑
i=1

ϵiFi .

0 = Tr RGG = h∨
G +

3

∑
i=1 (( 1

3
− ϵi) TrirGG + ( 4

3
+ 2ϵi) TriI3)

6 −
3

∑
i=1

(1 − 3ϵi) = 0

a(ϵ1, ϵ2, ϵ3) =
d
32 (13 − 9

3

∑
i=1

ϵ2
i (ϵi + 2)) ϵ := ϵ1 = ϵ2 = ϵ3 = −

1
3

.

[MJK,Lawrie,Lee,Song’23] 
[MJK,Lawrie,Lee,Song’21] 

a = c =
1
4

dim(SU(2n + 1))
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Does this look familiar?a = c =
1
4

dim(SU(2n + 1))



Matching anomalies
➡ The anomaly polynomial of the IR theory is

I6 =
1
6

kRRRc1(R)3 +
2

∑
α=1

1
6

kRRℱα
c1(R)2c1(ℱα) +

2

∑
α,β=1

1
6

kRℱαℱβ
c1(R)c1(ℱα)c1(ℱβ)

+
2

∑
α,β,γ=1

1
6

kℱαℱβℱγ
c1(ℱα)c1(ℱβ)c1(ℱγ) −

1
24

kRc1(R)p1(T ) −
2

∑
α=1

1
24

kℱα
c1(ℱα)p1(T ) ,

kRRR =
8d
9

, kRℱ2
α

= −
2d
3

, kRℱ1ℱ2
=

d
3

, kℱ2
1ℱ2

= − kℱ1ℱ2
2

= d , a = c =
1
4

d

d = dim(SU(2n + 1)) = 4n(n + 1) .where 

with

 : the 1st Chern class of the superconformal R-symmetry bundle 
 : the 1st Pontryagin class of the tangent bundle to the 4d spacetime 

 : the 1st Chern class of the bundles associated to each 

c1(R)
p1(T )
c1(ℱα) U(1)ℱa

( )
Match those of  SYM with !𝒩 = 4 G = SU(2n + 1)

[MJK,Lawrie,Lee,Song’23] 
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with

Match those of  SYM with !𝒩 = 4 G = SU(2n + 1)

[MJK,Lawrie,Lee,Song’23] 

The ’t Hooft anomalies are invariant on a conformal manifold
The IR theory lives in the same  preserving conformal manifold as  SYM!𝒩 = 1 𝒩 = 4



How do we verify this novel duality?

‣ Matching anomalies  
‣ Matching chiral operators 
‣ Matching superconformal indices

✓ 



Matching chiral operators
➡ Compare the gauge-invariant operator spectrum of dual theories. 

➡ The single-trace chiral operators of  SYM:  . 

➡ Each  has the moment map operator  in the 
adjoint of  with dimension 2 and carries R-charges .  
➡  Under the RG flow, the moment map operators in the IR becomes 

➡ Upon gauging , only the singlet part survives:

𝒩 = 4 Tr ϕi1ϕi2⋯ϕik

𝒟2(SU(2n + 1)) μ
G r = 0, I3 = 1

μ1, μ2, μ3

( : adjoint chirals)ϕik∈{1,2,3}

ΔIR(μ) =
3
2

R =
3
2 ( 4

3
+ 2ϵ) = 1

Tr μi1μi2⋯μik (ik ∈ {1,2,3})

[MJK,Lawrie,Lee,Song’23] 



Matching chiral operators
➡ Each   multiplet containing a Coulomb branch operator has 
two  chiral multiplets, whose components are  (the scalar 
primary) and its  descendant . 
➡ Each  has Coulomb branch operators of scaling 
dimensions  and their superpartners 

. 
➡ Upon the RG flow, these operators in the IR become 

 
➡ With  and putting them together, . 

➡ The Casimir operator of  SYM is , which match this!

𝒩 = 2
𝒩 = 1 u

𝒩 = 2 Q2u
𝒟2(SU(2n + 1))

ΔCB = r
2 = { 3

2 , 5
2 , ⋯, 2n + 1

2 }
(Δ, R𝒩=2, I3) = (ΔCB + 1, r − 2, 1)

ΔIR(u) = (1 − 3ϵ) ΔCB(u) , ΔIR(Q2u) = 1 + 6ϵ + (1 − 3ϵ) ΔCB(u) .
ϵ = − 1/3 ΔIR = {2,3,⋯,2n + 1}

𝒩 = 4 Tr(ϕi)k

[MJK,Lawrie,Lee,Song’23] 



Matching chiral operators
➡ The operator spectrum matches as

N4          SYM N=1        dual theory𝒩 = 4 𝒩 = 1

Tr ϕi1ϕi2⋯ϕik Tr μi1μi2⋯μik

Tr(ϕi)k (ui, Q2ui)

Superfluous looking chiral operators are removed via relations

μ2
adj

= 0 , Trμk = 0 .

[MJK,Lawrie,Lee,Song’23] 

The adjoint part of the square of the 
moment map operator is vanishing

Because the Higgs branch of this 
theory is given by a nilpotent orbit

Removes superfluous Casimir operators in the spectrum



Matching conformal manifolds
➡ The  dual theory has 5 marginal operators: 
◦  3 from each Coulomb branch operators of dimension . 
◦  2 formed from moment maps:  and . 
◦  Two are marginally irrelevant: it breaks  symmetry. They 

combine with the broken flavor symmetry currents to form a long 
multiplet and becomes non-BPS. 

➡  SYM has 11 marginal operators : 
◦  8 marginally irrelevant: recombine with the generators of SU(3) 

flavor symmetry broken at a generic point of the conformal manifold 
➡ The conformal manifold is 3 (complex) dimensional and matching!

𝒩 = 1
3/2

Tr μ1μ2μ3 Tr μ1μ3μ2
U(1)2

𝒩 = 4 Tr ϕiϕjϕk

[MJK,Lawrie,Lee,Song’23] 

[Green,Komargodski,Seiberg,Tachikawa,Wecht]



Matching conformal manifolds

➡ Move to the -preserving sub-locus in the conformal 
manifold: 
◦  The off-diagonal generators of SU(3) current combine with 

marginal operators to become long multiplets and become 
irrelevant.  
◦  This removes 6 out of 11 from the  SYM side.  

➡ Hence they both give 5 (complex) dimensions, matching!

U(1)2

𝒩 = 4

[MJK,Lawrie,Lee,Song’23] 



How do we verify this novel duality?

‣ Matching anomalies  
‣ Matching chiral operators 
‣ Matching superconformal indices

✓ 

✓ 



Matching superconformal indices
➡ For  with , we don’t know the full index. 

➡ The only case computable: . 
➡ Using this, we can compute the superconformal index of the 

 dual theory: 

➡ This matches that of  SYM with :

𝒟2(SU(2n + 1)) n > 1
𝒟2(SU(3))

𝒩 = 1
𝒩 = 4 G = SU(3)

[Agarwal,Maruyoshi,Song]

[MJK,Lawrie,Lee,Song’22] I = Tr(−1)Ft3(R+2j2)y2j1Πiv
fi
i

̂I 𝔰𝔲3 ≡ (1 − t3y)(1 − t3/y)(I𝔰𝔲3 − 1)
= t4χ𝔰𝔲3

6 − t5χ𝔰𝔲2
2 χ𝔰𝔲3

3 + t6(χ𝔰𝔲3
10 − χ𝔰𝔲3

8 + 1) − t7χ𝔰𝔲2
2 (χ𝔰𝔲3

6 − χ𝔰𝔲3
3

) + t8(χ𝔰𝔲3
15′ − χ𝔰𝔲3

15 + χ𝔰𝔲3
6

+ 2χ𝔰𝔲3
3 )

−t9χ𝔰𝔲2
2 (χ𝔰𝔲3

10 + 1) + t10(χ𝔰𝔲2
3 χ𝔰𝔲3

3
+ χ𝔰𝔲3

21
− χ𝔰𝔲3

15
+ 2χ𝔰𝔲3

6 − 2χ𝔰𝔲3
3

) + ⋯, [MJK,Lawrie,Lee,Song’23] 

‣  is the character of the representation  in Lorentz spin .χ𝔰𝔲2
R = χ𝔰𝔲2

R (y) R j1
‣ The  flavor symmetry enhances to  at certain points of the conformal manifoldU(1)2 SU(3)

 Each term is written in terms of  of the enhanced flavor⟶ χ𝔰𝔲3
R



Matching Schur index
➡ If there existed the full index for  with , the index 
of the dual theory would be 

➡ For  with , the Schur limit of the index is known:  

➡ This is identical to that of a free hypermultiplet upon rescaling . 

➡ The index of  SYM:

𝒟2(SU(2n + 1)) n ≥ 1

𝒟2(SU(2n + 1)) n ≥ 1

q → q2

𝒩 = 4

[Xie,Yan,Yau][Song,Xie,Yan]

I(p, q) = ∫ [dz]Ivec(z)
3

∏
i=1

I𝒟2(SU(2n+1))(z)
𝔱→(pq)

2
3 +ϵi

, ϵi = −
1
3

.

I𝒟2(SU(2n+1))
S (q; z) = PE [ q

1 − q2
χadj(z)]

I𝒩=4(p, q) = ∫ [dz]Ivec(z)Ichi(z)3 ,

Ichi(z) = PE [ (pq)1/3 − (pq)2/3

(1 − p)(1 − q) χadj(z)] .where the index for the adjoint chiral is



Matching Schur index
➡ Take the Schur limit:  or equivalently  

➡ The two Schur indices match!

q = 𝔱 = (pq)1
3 p → q2

Idual(p, q) = ∫ [dz]Ivec(z)
3

∏
i=1

PE [ q
1 − q2

χadj(z)] q,𝔱→(pq)1/3

= ∫ [dz]Ivec(z)PE [ (pq)1/3 − (pq)2/3

(1 − p)(1 − q) χadj(z)]
3

p→q2
= I𝒩=4(p, q)

[Buican,Nishinaka]

[MJK,Lawrie,Lee,Song’23] 



How do we verify this novel duality?

‣ Matching anomalies  
‣ Matching chiral operators 
‣ Matching superconformal indices

✓ 

✓ 

✓ 

Voila!



What if we consider ? 𝒟p≥2(G ≠ SU(2n + 1))

‣ Construct  SCFTs with  in this fashion!𝒩 = 1,2 a = c



The dual theory is built out of 3 copies of ,  
gauging the diagonal flavor symmetry group via  gauge multiplet.

𝒟2(SU(2n + 1))
𝒩 = 1

Now we are familiar with our dual theory:

Actually, this is a special example of  theory with ! 
Shall we construct them?

𝒩 = 1 a = c



Gauging/gluing  theories𝒟p(G)
➡ A collection of  theories can be gauged together by their 
common flavor symmetry . 
➡ To obtain an  SCFT upon gauging, 

➡ Very restrictive — there are only 4 solutions:

𝒟p(G)
G

𝒩 = 2
𝒟p1

(G)

𝒟p2
(G)𝒟pn

(G) G

𝒟pi
(G)

flavor central charge of  :𝒟pi
(G)

βG = 0 ⟺
n

∑
i=1

ki = 4h∨
G

ki =
2(pi − 1)

pi
h∨

G ⟹
n

∑
i=1

1
pi

= n − 2

 the  sets   . {pi} (2,2,2,2), (3,3,3), (2,4,4), (2,3,6)

the beta function for the gauge coupling 
has to vanish.



 theory with Γ̂(G) a = c
➡ The theory has  when 

➡ Such a theory has no flavor 
symmetry.

a = c
gcd( , ) = 1

•   the dual Coxeter number of h∨
G G

•   the largest comark associated 
to the affine Dynkin diagram 
αΓ

Γ̂

h∨
G αΓ

while   .Γ = D4, E6, E7, E8

[MJK,Lawrie,Song]



 theory with Γ̂(G) a = c
➡ The theory has  whena = c

gcd( , ) = 1

•   the dual Coxeter number of h∨
G G

•   the largest comark associated 
to the affine Dynkin diagram 
αΓ

Γ̂

h∨
G αΓ

while   .Γ = D4, E6, E7, E8
➡ The theory has (at least) 1 exactly marginal coupling. 

➡ The theory has 1-form symmetry given by the center of .G

[MJK,Lawrie,Song]



Connection to  SYM𝒩 = 4

➡ This is a superset of theories with  :a = c

The Schur index of  theory without any flavor symmetry Γ̂(G)

The Schur index of  SYM𝒩 = 4
Up to rescaling fugacities

I ̂Γ (G)(q) = I𝒩=4
G (qαΓ, qαΓ/2−1)

For , this relation follows from a graded vector space isomorphism 
between the associated vertex operator algebras [Buican,Nishinaka]

̂E6(SU(2))

[MJK,Lawrie,Song]



Schur index for Γ = D4, E6, E7, E8
➡ For the theories with , the  theories needed does not carry any 
extra flavor symmetry. The Schur index of a : 

➡ The Schur Index of the  theory with  is then  

➡ For  theory, the Schur index can be written in terms of MacMahon’s 
generalized ‘sum-of-divisor’ function, which is quasi-modular:

a = c 𝒟p(G)
𝒟p(G)

Γ̂(G) a = c

D̂4(G)

I𝒟p(G)(q, ⃗z ) = PE [ q − qp

(1 − q)(1 − qp)
χG

adj( ⃗z )]
IΓ̂(G)(q) = ∫ [ d ⃗z ] PE [ q + qαΓ−1 − 2qαΓ

(1 − q)(1 − qαΓ)
χG

adj( ⃗z )]

[Song,Xie,Yan][Kac,Wakimoto]

[MJK,Lawrie,Song]

I ̂D 4(SU(2k+1))(q) = q−k(k+1)Ak(q2)

I𝒩=4
SU(2k+1)(q) = q− k(k + 1)

2 Ak(q)
Ak(q) = ∑

0<m1<m2⋯<mk

qm1+⋯mk

(1 − qm1)2⋯(1 − qmk)2



4d  SCFTs with 𝒩 = 1 a = c
➡ Now do the similar construction for  theories with . 

➡ We have more sets of satisfying the bound:

𝒩 = 1 a = c
{pi}

[MJK,Lawrie,Lee,Song’21]

n

∑
i=1

1
pi

≥ n − 3

β > 0

β = 0

β < 0

:  IR-free  Decouples to each  + free vector→ 𝒟p(G)

: conformal gauging (as before)

: IR strongly coupled  SCFT IR fixed point→

β ≤ 0 :

Asymptotically-free



Conditions on p
➡ 

n

∑
i=1

1
pi

> n − 3β < 0 :
n

∑
i=1

1
pi

= n − 3β = 0 :➡ 

This is what gave the dual theory to  SYM!𝒩 = 4

Not all such gaugings flow to interacting SCFTs

➡ Surprising fact: when  we always have !gcd(pi, h∨
G) = 1, a = c

[MJK,Lawrie,Lee,Song’21]



Including adjoint matter
➢ Include  number of chiral multiplets charged 
under  in the representation  of  with 
R-charge .

m
G Rℓ=1,⋯m G

Rℓ
𝒟p1

(G)

𝒟p2
(G)

𝒟pn
(G)G

𝒟pi
(G)

R1
R2

Rm

Rℓ

n

∑
i=1

pi − 1
pi

+
m

∑
ℓ=1

h∨
G

≤ 3β ≤ 0 :

the Dynkin index of the representation
I(Rℓ)

Can only be satisfied with .  
 Can include up to three adjoint chirals!

m = 0,1,2,3
⟹

then the anomaly cancellation 
guarantees .a = c

dim(G)
h∨

G
=

48(ai − ci)

− pi − 1
pi

h∨
G

=
dim(Rℓ)

I(Rℓ) 16 (a − c) =
dim(G)

h∨
G

Tr RGG = 0

If gcd(h∨
G , αΓ) = 1 If the matter is in the adjoint representation

[MJK,Lawrie,Lee,Song’21]



 + two adjoint chirals 𝒟p(G) (X, Y )

Flipper field :

Now a ≠ c

Deform by superpotentials: 
Landscape of  theories with 𝒩 = 1 a = c
Inspired from SQCD with two adjoint chirals 
analysis of                                        :[Intriligator,Wecht]

contributes only to  
but not on 

TrR
TrRGG

[MJK,Lawrie,Lee,Song, To appear]



RG flows from   theories to  SYM𝒩 = 1 a = c 𝒩 = 4
➡ It turns out many (not all) of the  theories we consider can 
be deformed so that it RG flows to the  SYM theory! 

➡ Upon deforming  via its relevant operator of scaling 
dimension , it flows to a theory of free chirals. 

➡ By deforming our   SCFT using this operator, we 
can effectively replace the   via an adjoint chiral in . 
➡ Once we reach 3 adjoint chirals and nothing else, we get a 
theory that is in the same conformal manifold as  SYM!

a = c
𝒩 = 4

𝒟p(G)
Δ = p + 1

p |G |

𝒩 = 1,2 a = c
𝒟p(G) G

𝒩 = 4

[Bolognesi,Giacomelli,Konishi][Xie,Yan]



Holographic outlook
➡ The aforementioned class  description paves the way to a 
holographic dual of our  theory in the UV. 

➡ The putative holographic duals of  SCFTs with  
should have vanishing  correction term, whose 
coefficient is proportional to , in the supergravity action. 

➡ Our novel RG flow suggests that there is a domain wall solution 
interpolating the  UV theory and the IR  SYM, which 
admits ``miraculous cancellations,'' and therefore sheds light on 
this seemingly fine-tuned coefficient. 

𝒮
𝒩 = 1

𝒩 = 1,2 a = c
RμνρσRμνρσ

(c − a)

𝒩 = 1 𝒩 = 4

[MJK,Lawrie,Song’21[MJK,Lawrie,Lee,Song’21’22]

[Anselmi,Kehagias]

[MJK,Lawrie,Lee,Song’23]



Thank you for listening!


