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The EIC - 2 concepts
eRHIC = RHIC  + 
          Energy-Recovery Linac

ELIC = CEBAF + Hadron Ring
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eRHIC luminosity at top energy

Hourglass effect is included: 

  e p 2He3 79Au197 92U238

Energy, GeV 20 (30) 325 215 130 130

CM energy, GeV   161 131 102 102
    (197) (161) (125) (125)

Number of bunches/distance between bunches 74 nsec 166 166 166 166

Bunch intensity (nucleons) ,1011 0.24 (.05) 2 3 5 5

Bunch charge, nC 3.8 (0.4) 32 32 32 32

Beam current, mA 50 (10) 420 420 420 420

Normalized emittance of hadrons , 95% , mm mrad   1.2 1.2 1.2 1.2

Normalized emittance of electrons, rms, mm mrad  23 (34) 35 (52) 57 (85) 57 (85)

Polarization, % 80 70 70 none none

rms bunch length, cm 0.2 4.9 4.9 4.9 4.9

β*, cm 5 5 5 5 5

Luminosity per nucleon, cm-2s-1 

 1.46 x 1034   

  (0.29 x 1034) 

 1.46 x 1034   

  (0.29 x 1034) 

 1.46 x 1034   

  (0.29 x 1034) 

 1.46 x 1034   

  (0.29 x 1034) 

 1.46 x 1034   

  (0.29 x 1034) 

Vladimir N. Litvinenko for eRHIC team
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The EIC - Rough Time Line
Proceedings from the INT meeting fall 2010

to be final spring 2011

This is a launching pad for the white paper
1st draft white paper in fall 2011

Convince Nuclear Science Advisory Committee
to make the EIC the top priority in the next long range 

plan by the end of 2012/early 2013.

Site selection?

First Beam 2020-2022

http://www.int.washington.edu/talks/WorkShops/int_10_3/

Monday, January 10, 2011
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The EIC - Measurements

Large x:
Internal Spin Landscape of Nuclei:

Exclusive and SIDIS measurements
Polarized Beams!

Electroweak Physics

FA
2 & FA

L

J/Ψ, φ ρ, DVCS

Much more information on:
http://web.mit.edu/eicc/

Small x/Saturation:
Momentum Gluon Distributions of Nuclei:

Spacial Gluon Distribution of Nuclei
Exclusive diffractive

Dijets, azimuthal decorrelation

Monday, January 10, 2011
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The EIC - Measuremens

FA
2 & FA

L

J/Ψ, φ ρ, DVCS

“Oomph” factor - increase in non-linear effects/
black body scattering

Expensive Oomph: High Energy, small x
Cheap Oomph: Large A:

QA
s
2 ∝ A1/3Qp

s
2

Small x/Saturation:
Momentum Gluon Distributions of Nuclei:

Spacial Gluon Distribution of Nuclei
Exclusive diffractive

Dijets
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The EIC - Measuremens

FA
2 & FA

L

J/Ψ, φ ρ, DVCS

QA
s
2 ∝ A1/3Qp

s
2

Small x/Saturation:
Momentum Gluon Distributions of Nuclei:

Spacial Gluon Distribution of Nuclei
Exclusive diffractive

Dijets
“Oomph” factor - increase in non-linear effects/

black body scattering
Expensive Oomph: High Energy, small x

Cheap Oomph: Large A:
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Slides from Markus Diehl
7/10 at the INT workshop
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Slides from Markus Diehl
7/10 at the INT workshop
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Figures by T. Lappi
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The EIC - Measuremens
Small x/Saturation:

Momentum Gluon Distributions of Nuclei:

Spacial Gluon Distribution of Nuclei
FA
2 & FA

L

“Oomph” factor - increase in non-linear effects/
black body scattering

Expensive Oomph: High Energy, small x
Cheap Oomph: Large A:

QA
s
2 ∝ A1/3Qp

s
2
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Probing the Nucleus at small x
At large x: large p+,
short wavelength in x−,
individual nucleons
can be resolved.

x−
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Probing the Nucleus at small x
At large x: large p+,
short wavelength in x−,
individual nucleons
can be resolved.

At smaller x,
coherently probe larger area.

x−
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Probing the Nucleus at small x
At large x: large p+,
short wavelength in x−,
individual nucleons
can be resolved.

At smaller x,
coherently probe larger area.

At x � A−1/3

MNRp

coherently probing
the whole nucleus.

Challenge for MC, can not just use “A x Pythia”!!

x−

Monday, January 10, 2011



Building An Event 
Generator For EIC
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What we want
• A multi purpose generator

• High and low Q2

• High and low x

• Exclusive final states

• Diffraction

• ...

Will probably need to be a collection of many 
programs collected in a package.

Monday, January 10, 2011
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XDVMP
eXclusive Diffractive Vector 

Meson Production

http://rhig.physics.yale.edu/~ullrich/xdvmp/

Monday, January 10, 2011

http://rhig.physics.yale.edu/~ullrich/xdvmp/index.html
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The Dipole Model

Elastic photon-proton 
scattering

18

Exclusive diffractive processes at HERA within the dipole picture, H. Kowalski, L. Motyka, G. Watt, Phys. Rev. D74, 074016, 
arXiv:hep-ph/0606272v2

‘

∆ ≡ (p�µ − pµ)⊥

Monday, January 10, 2011
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The Dipole Model

Use:
Optical theorem:

Real Part of S-matrix:

Define dipole cross-section:

N (x, r, b)

Monday, January 10, 2011



Vector Meson Production

Known from QED
Needs to be modeled20

i

�
d2r

� 1

0

dz

4π

�
d2b(Ψ∗

V Ψ)T,Le
−i([1−z]r+b)·∆ dσqq̄

d2b

∆ ≡ (p�µ − pµ)⊥

Monday, January 10, 2011



The Dipole Models

Two models for the dipole cross-section 
implemented in XDVMP:

b-Sat
b-CGC

21

Monday, January 10, 2011



The b-Sat Model

22

A model with multiple scatterings.
No gluon-gluon recombinations!
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The b-Sat Model

23
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The b-Sat Model

24
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The b-CGC Model

25

Includes gluon recombinations

Monday, January 10, 2011



Exclusive electroproduction of J/Psi mesons at HERA Nuc. Phys. B695
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26Plots produced by M. Savastio

HERA Data

XDVMP

       at HERA vs. b-CGC
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Exclusive electroproduction of J/Psi mesons at HERA Nuc. Phys. B695
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Going from ep to eA

ep:

eA:

Should follow the Wood-Saxon distribution
Monday, January 10, 2011
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Generating a Nucleus
Generate radii according to the Wood-Saxon 

distribution

cos(θ)φ

ρ(r) =
d3N

d3r
ρ(r) =

ρ0

1 + e
r−R0

d

First generate according to r:
dN

dr
= 4πr2ρ(r)

Then generate angular distributions 
uniform in    and 

This is done with a condition that two nucleons can not 
be within a core distance of ~0.8fm. 

If they are: regenerate angles (not radius!)

Monday, January 10, 2011
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Generating a Nucleus

Lead 208 in the r-phi plane, each nucleon is 
supplemented with a Gaussan width.

Monday, January 10, 2011
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Technical Problem

Extremely slow!!!!

bSat:

Not possible for bCGC!! Is abandoned for now.

Product becomes a sum over a function only 
dependent on b.

Monday, January 10, 2011
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Going from ep to eA
Another difference in eA:
The Nucleus can break up

into its colour neutral fragments!

When the nucleus breaks up, the scattering is called 
incoherent

When the nucleus stays intact, the scattering is called 
coherent

Total cross-section = incoherent + coherent

Monday, January 10, 2011
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Incoherent Scattering

dσcoherent

dt
=

1

16π
|�A�|2dσtotal

dt
=

1

16π

�
|A|2

�

complete set{

Nucleus dissociates (       ):f �= i Good, Walker

σincoherent ∝
�

f �=i

�i|A|f�† �f |A|i�

=
�

f

�i|A|f�† �f |A|i� − �i|A|i�† �i|A|i�

=
�
i
��|A|2

�� i
�
− |�i|A|i�|2 =

�
|A|2

�
− |�A�|2

The incoherent CS is the variance of the amplitude!!
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Averaging over initial state

The average should be taken over initial 
nucleon configurations    within the nucleus

(the nucleon configurations are not a QM observable).

dσcoherent

dt
=

1

16π
|�A�|2

Ω

Monday, January 10, 2011
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Coherent

  is a Fourier transform of b. This means that small 
variations in b will be seen at large t and vice versa

The question is how many configuration is needed to 
be averaged over for the cross-section to converge.

A

dσcoherent

dt
=

1

16π

������
1

Cmax

Cmax�

j=1

A(Ωj)

������

2

�
A
�
Ω
=

��
dr

�
dz

4π

�
d2b(Ψ∗

V Ψ)(r, z)2πrbJ0([1− z]r∆)

e−ib·∆ dσqq̄

d2b
(x, r,b,Ω)

�

Ωt ≡ −∆2
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Coherent
dσcoherent

dt
=

1

16π

������
1

Cmax

Cmax�

j=1

A(Ωj)

������

2

Q2 = 10−4

x � 6 · 10−8
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Incoherent/Total 
dσtotal

dt
=

1

16π

1

Cmax

Cmax�

j=1

|A(Ωj)|2

dσcoherent

dt
=

1

16π

������
1

Cmax

Cmax�

j=1

A(Ωj)

������

2

dσincoherent

dt
=

dσtotal

dt
− dσcoherent

dt
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Incoherent/Total 

Q2 = 10−4

x � 6 · 10−8

t-slope ≈ −6

Monday, January 10, 2011
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Incoherent/Total 
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We can suppress the the incoherent 
background by 90-99%

This result means that it will be 
possible to measure the first 2-3 

coherent bumps and access the spatial 
gluon distribution at an EIC!!
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40

Incoherent/Total 
This could be one of the main 

measurements of the EIC
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Outlook

Will implement DVCS asap

Semi inclusive DIS

eA → e�A�X

Monday, January 10, 2011
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Back up

Monday, January 10, 2011
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Figures by T. Lappi
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Plots produced by Ramiro Debbe

Something is missing!!

First comparison with data

44

Exclusive electroproduction of J/Psi mesons at HERA Nuc. Phys. B695

Black Curve: XDVMP b-CGC

Red Curve: Black Curve x 1.5

Monday, January 10, 2011
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Real Amplitude 
Corrections

Monday, January 10, 2011



Real Amplitude 
Corrections

So far the amplitude has been assumed to be purely 
imaginary.
To take the Real part of the amplitude into account it 
can be multiplied by a factor 
   is the ratio Real/Imaginary parts of the Amplitude:

This goes bad for large x~10-2

46
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Skewedness Corrections

The two gluons carry different momentum fractions
This is the Skewed effect

In leading ln(1/x) this effect disappears
It can be accounted for by a factor Rg

47

Again, this goes bad for large x~10-2!
Implemented with exponential damping to control this.
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Nucleon Separation [fm]
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eRHIC IRs, β*=5cm, l*=4.5 m 
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T/m gradient 
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