Electroweak physics at the LHC (including top mass and top properties)

Qiang Li (Peking University) 2023/11/28

Electroweak milestones: From infancy to adolescence

91.2 GeV/c

Z boson

171.2 GeV/c²

top

 $\frac{2}{3}$ $\frac{1}{2}$

Neutral currents 50; W/Z boson turns 40; Top quark now 28; Higgs turns 11.

Seattle snowmass summer meeting 2022

Direct and indirect searches for BSM

Rich results at the LHC (ATLAS, CMS)

Rich Results at the LHC (ATLAS, CMS)

W helicity fraction (also here)

Charge Asymmetry

Top-pair production cross-section

Selected Topics with bias

W Mass **Top Mass** Single V, V decay Di-boson VBS Tri-boson Four Top EFT as the new SM Ewk/Top as novel tools Run 3 & Future

W Mass

HIGGS AND ELECTROWEAK | FEATURE

The W boson's midlife crisis

24 August 2023

Forty years after its discovery, the W boson continues to intrigue. Chris Hays describes recent progress in understanding a surprisingly high measurement of its mass using data from the former CDF experiment.

- CDF <u>W-boson mass</u> results: 80434 +- 9 MeV, differed significantly from the SM prediction and the other experimental results.
- Improved ATLAS result weighs in on the W boson: 80360 +- 16 MeV.
- LHCb W mass uncertainty as 32 MeV
- <u>Future Colliders</u>: ~ 0.3-0.4 MeV
- <u>W-boson mass combination WG</u>

Powerful tools for consistency test on over-constrained Standard Model

Top mass

Direct measurements **m**,^{MC}

Indirect measurements **m**, ^{pole}

CERN-LPCC-2023-02 Run I LHC top mass combination

10

arXiv:2309.09318 Eur. Phys. J. C 83 (2023) 628 Drell-Yan precision

 N3L0 QCD predictions obtained from DYTurbo

aN³LO MSHT PDF set.

- A negative correction of 0.4% from NLO EW included
- a p-value of 11% if one only includes the uncertainties in the PDFs for the predictions
- 2D differential distributions measured in both papers

Single W precision

PRD 102 (2020) 092012

- lepton eta-pT depends on W helicity, which is largely determined by parton distribution function.
- Can be used to constrain parton distribution function, modelling, etc.
- Precursor to CMS W Mass measurement.

PRD 105 (2022) 072008 PLB 842 (2023) 137563 ATLAS-CONF-2023-053

W/Z decay

arXiv:2309.12408

W decay branch ratio

and and a second second	CMS	LEP
$\mathcal{B}(W \to e\overline{\nu}_e)$	$(10.83 \pm 0.01 \pm 0.10)\%$	$(10.71 \pm 0.14 \pm 0.07)$ %
$\mathcal{B}(W \to \mu \overline{\nu}_{\mu})$	$(10.94 \pm 0.01 \pm 0.08)\%$	$(10.63 \pm 0.13 \pm 0.07)$ %
$\mathcal{B}(W ightarrow au \overline{ u}_{ au})$	$(10.77 \pm 0.05 \pm 0.21)\%$	$(11.38 \pm 0.17 \pm 0.11)$ %
$\mathcal{B}(W \to q\overline{q}')$	$(67.46 \pm 0.04 \pm 0.28)\%$	
Assuming LFU	- 22 June 1 June	
$\mathcal{B}(W \to \ell \overline{\nu})$	$(10.89 \pm 0.01 \pm 0.08)\%$	$(10.86 \pm 0.06 \pm 0.09)\%$
${\cal B}(W\to q\overline{q}')$	$(67.32 \pm 0.02 \pm 0.23)\%$	$(67.41 \pm 0.18 \pm 0.20)\%$

The tension LEP noticed is not visible in ATLAS data

The inclusive measurement ΔA_{FB} differs from zero at the level of 2.4 standard deviations

<u>Phys. Rev. Lett. 126, 252002 (2021)</u> <u>Phys. Rev. D 105 (2022) 052003</u>

- Technique called <u>interference resurrection</u> used to enhance anomalous coupling sensitivity
- Phenomenon called radiation amplitude zero: a 0 in the LO cross section at $\Delta \eta(I,\gamma) = 0$

Table 4: Best fit values of C_{3W} and corresponding 95% CL confidence intervals as a function of the maximum p_T^{γ} bin included in the fit.

$p_{\rm T}^{\gamma}$ cutoff (GeV)	Best fit C_{3W} (TeV ⁻²)		Observed 95	Observed 95% CL (TeV $^{-2}$)		Expected 95% CL (TeV $^{-2}$)	
	SM+int. only	SM+int.+BSM	SM+int. only	SM+int.+BSM	SM+int. only	SM+int.+BSM	
200	-0.86	-0.24	[-2.01, 0.38]	[-0.76, 0.40]	[-1.16, 1.27]	[-0.81, 0.71]	
300	-0.25	-0.17	[-0.81, 0.34]	[-0.39, 0.28]	[-0.56, 0.60]	[-0.33, 0.33]	
500	-0.13	-0.025	[-0.50, 0.25]	[-0.15, 0.12]	[-0.35, 0.38]	[-0.17, 0.16]	
800	-0.20	-0.033	[-0.49, 0.11]	[-0.10, 0.08]	[-0.29, 0.31]	[-0.097, 0.095]	
1500	-0.13	-0.009	[-0.38, 0.17]	[-0.062, 0.052]	[-0.27, 0.29]	[-0.066, 0.065]	

The technique will also be valuable in the future when sufficiently small values of aGCs are probed such that the interference contribution will be dominant

JHEP 07 (2022) 032

WZ (polarization)

First observation of single longitudinally polarized W bosons in WZ production! 5.6σ (4.3 σ) obs (exp).

WZ (joint polarization)

Phys. Lett. B 843 (2023) 137895

Measurement performed as well separating by the W charge

- Significance on f_{00} at 6.9σ in W+Z
- Significance on f_{00} at 4.1σ in W-Z

Phys. Lett. B 812 (2020) 136018

Polarized VBS

- Signal sample simulated in WW/pp center-of-mass frame
- Simultaneous fit on two BDT discriminant variables: $\mathbf{\underline{M}} W_{L}^{\pm} W_{L}^{\pm}$: signal BDT ($W_{L}^{\pm} W_{L}^{\pm}$ vs $W_{T}^{\pm} W_{X}^{\pm}$) and inclusive BDT (VBS vs Bkg.)
 - $\mathbf{V}_L^{\pm} W_X^{\pm}$: signal BDT ($W_L^{\pm} W_X^{\pm}$ vs $W_T^{\pm} W_T^{\pm}$) and inclusive BDT (VBS vs Bkg.)

Observed (expected) significance for LL and LT+LL: 0.88 (1.17)σ; 2.3 (3.1)σ

arXiv:2305.16994

WZy observation

($e\mu\mu$, μee , eee, $\mu\mu\mu$) channels combined profile-likelihood fit in SR+2CRs

Process	SR	$ZZ\gamma CR$	$ZZ(e \rightarrow \gamma) \operatorname{CR}$
$WZ\gamma$	92 ± 15	0.21 ± 0.07	0.56 ± 0.14
$ZZ\gamma$	10.7 ± 2.3	23 ± 5	1.8 ± 0.4
$ZZ(e \rightarrow \gamma)$	3.0 ± 0.6	0.028 ± 0.020	30 ± 6
Ζγγ	1.05 ± 0.32	0.15 ± 0.06	0.29 ± 0.10
Nonprompt background	30 ± 6	-	-
Pileup γ	1.9 ± 0.7	-	-
Total yield	139 ± 12	23 ± 5	33 ± 6
Data	139	23	33

arXiv:2310.05164

WWy Observation

- only eµ channel
- SSWW γ and TOP γ CRs, 5.6 (4.7) σ obs.(exp.)
- data-driven non-prompt backgrounds
- maximum likelihood fit of 2D binned distributions.

 $\mu^{
m obs.}_{
m combined}~=~1.31\pm0.17\,
m (stat)\pm0.21\,
m (syst)$

- Also sensitive to Higgs couplings with light quarks
 o no gluon fusion contribution due to Furry's theorem
- Further optimization targeting the Higgs characteristics

σ upper limits obs. (exp.) [fb]	$\kappa_{\rm q}$ limits obs. (exp.) at 95% CL
85 (67)	$ \kappa_{\rm u} \le 16000 \ (13000)$
72 (58)	$ \kappa_{\rm d} \le 17000 \ (14000)$
68 (49)	$ \kappa_{\rm s} \le 1700$ (1300)
87 (67)	$ \kappa_{\rm c} \le 200 \ (110)$

<u>EPJC 83 (2023) 496</u> <u>PL B 847 (2023) 138290</u> Four Top

Four top production (tttt): a very rare standard model (SM) process

- σ(tttt)_{NLO(QCD+EW)}= 12.0 ± 2.4 fb [JHEP 02 (2018) 031]
- $\sigma(\text{tttt})_{\text{NLO}(\text{QCD+EW})+\text{NLL}} = 13.4^{+1.0}$ fb [arXiv:2212.03259]
- → Probe of top-Higgs Yukawa coupling
- → Heaviest final state observed at LHC
- → Sensitivity to wide range of new physics scenarios and effective field theory (EFT) operators

Observations based on Re-analysis of Run 2 datasets.

Systematically limited

ATL-PHYS-PUB-2021-022 ATL-PHYS-PUB-2022-037 **SMEFT:** The new Standard Model arXiv:2307.15761 arXiv:2211.08353

Phys. Rev. Lett. 131 (2023) 011803 Eur.Phys.J.C 83 (2023) 9, 824

VBS as a novel tool

ATLAS-CONF-2023-057 CMS-PAS-HIG-23-007

q H. b G W V e, µ

Heavy Majorana searched up to 23TeV!

0νμμ experiment and effective neutrino mass probe

- Excluded λ_{WZ} = -1 at >8 σ
- Measure μ for + λ_{WZ} signal Fit: $\hat{\mu} = 2.6^{+4.6}_{-4.5}$

arXiv:2311.07288 Top pair as a novel tool: Quantum Entanglement

- Highest-energy observation of quantum entanglement between a pair of qubits
- **Quantum Tomography:** reconstruction of the quantum state from measurement of a set of expectation values, see e.g., : <u>EPJP (2021)</u>, <u>Quantum (2022)</u>, <u>EPJC (2022)</u>
- A single observable can be used as an entanglement witness, with the QE criteria:

CMS-PAS-TOP-22-007 Top pair as a novel tool: Lorentz Violation

Dilepton eµ final state with 2016-2017 Run 2 dataset **CMS** Preliminary 77.4 fb⁻¹ (13 TeV) Number of b-jets in bins of sidereal time SM predictions 1.08 Data Separate between tt and tW background Ο 1.06 $b_{t\bar{t}}^{-}/dt (h^{-1})$ 1.04 Modulation of cross section with sidereal time 1.02 þ (24) CMS Simulation Preliminary 86.0 ^{#1}/(م $n \simeq 23.5$ 2016 C_{L.XX}=-C_{I vv}=0.0 0.96 $\beta_{\oplus} \simeq 10^{-4}$ 0.94 1.005 N_{tī,SME}/N_{tī,SM} 0.9212 14 16 18 20 22 24 Sidereal time (h) 0.995 No significant deviation and 4 directions, 0.99 significant improvement (~100) over 4 families D0 (PRL 108 (2012) 261603) of coefficients 25 Sidereal hour + $0.25 \times (number of b jets - 1)$

JHEP 08 (2023) 204 arXiv:2308.09529 arXiv:2311.09715 CMS-PAS-SMP-22-017

Run3

tt⁻cross section and *tt*⁻/Z ratio relative uncertainty already small

DY cross section

26

Future

2020 European Strategy Update

"An electron-positron Higgs factory is the highestpriority next collider. For the longer term, the European particle physics community has the ambition to operate a protonproton collider at the highest achievable energy."

(European Strategy Update brochure)

Snowmass 2021

"The intermediate future is an *e*+*e*- Higgs factory, either based on a linear (ILC, C3) or circular collider (FCC-ee, CepC). In the long term EF envision a collider that probes the multi-TeV scale, up or above 10 TeV parton center-of-mass energy (FCC-hh, SppC, Muon Coll.)" (Energy Frontier Plenary by Alessandro Tricoli)

Operation mode		ZH	Z	W⁺W-	tī	
\sqrt{s} [GeV]		240	91	160	360	
	Rur	n time [years]	7	2	1	-
		L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
$\begin{array}{c} \text{CDR} \\ (30 \text{ MW}) \end{array} \int L dt [\text{ab}^{-1}, 2 \text{ IPs}] \end{array}$		5.6	16	2.6	-	
Event yields [2 IPs]		1×10 ⁶	7×10 ¹¹	2×10 ⁷	-	
Run Time [years]		10	2	1	5	
	1.000	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
st)	30 MW	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	13	60	4.2	0.65
ate		Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
S (L		L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	26.7	0.8
		$\int L dt$ [ab ⁻¹ , 2 IPs]	21.6	100	6.9	1.0
		Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

Future

Observable	I	oresen	ıt	FCC-ee	FCC-ee	Comment and
	value	±	error	Stat.	Syst.	leading error
$m_{\rm Z} \ ({\rm keV})$	91186700	±	2200	4	100	From Z line shape scan Beam energy calibration
$\Gamma_{\mathbf{Z}} \ (\text{keV})$	2495200	±	2300	4	25	From Z line shape scan Beam energy calibration
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480	±	160	2	2.4	From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration
$1/\alpha_{\rm QED}(m_Z^2)(\times 10^3)$	128952	±	14	3	\mathbf{small}	From $A_{FB}^{\mu\mu}$ off peak QED&EW errors dominate
$\mathbf{R}^{\mathbf{Z}}_{\ell}$ (×10 ³)	20767	±	25	0.06	0.2-1	Ratio of hadrons to leptons Acceptance for leptons
$\alpha_{\rm s}({\rm m_Z^2})~(\times 10^4)$	1196	±	30	0.1	0.4-1.6	From $\mathbf{R}^{\mathbf{Z}}_{\ell}$
$\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$	41541	±	37	0.1	4	Peak hadronic cross section Luminosity measurement
$N_{\nu}(\times 10^3)$	2996	±	7	0.005	1	Z peak cross sections Luminosity measurement
$R_b (\times 10^6)$	216290	±	660	0.3	< 60	Ratio of bb to hadrons Stat. extrapol. from SLD
$A_{FB}^{b}, 0~(\times 10^4)$	992	±	16	0.02	1-3	b-quark asymmetry at Z pole From jet charge
$\mathbf{A_{FB}^{pol,\tau}}\left(\times10^{4}\right)$	1498	±	49	0.15	$<\!\!2$	au polarization asymmetry au decay physics
au lifetime (fs)	290.3	±	0.5	0.001	0.04	Radial alignment
$ au ext{ mass (MeV)}$	1776.86	±	0.12	0.004	0.04	Momentum scale
τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	17.38	±	0.04	0.0001	0.003	e/μ /hadron separation
$m_{W} (MeV)$	80350	±	15	0.25	0.3	From WW threshold scan Beam energy calibration
$\Gamma_{\mathbf{W}} \ (\mathrm{MeV})$	2085	±	42	1.2	0.3	From WW threshold scan Beam energy calibration

FCC feasibility Mid-term report -Deliverable #8, <u>physics and Experiments</u>

Comprehensive measurements of the Z lineshape and many Electroweak Precision Observables

50x improved precision

W mass, width and more

Future

precision reach on effective couplings from SMEFT global fit

With 20 ab ⁻¹ at √s=100 TeV expect:	Conclusive elu
~ 10^{13} W ~ 10^{12} Z ~ 10^{11} tt ~ 10^{10} H ~ 10^{9} ttH ~ 10^{7} HH ~ 10^{5} gluino pairs m=8 TeV	Without H: V _L V H regularize Else: new pl heavy reso FCC-hh: direct

icidation of EWSB by probing SM in regime where EW symmetry is restored (\sqrt{s} >> v=246 GeV)

```
scattering violates unitarity at m<sub>w</sub> ~TeV
s the theory fully \rightarrow a crucial "closure test" of the SM
```

nysics: anomalous quartic couplings (VVVV, VVhh) and/or new

onances

discovery potential of new resonances in the O(10 TeV) range

Fabiola Gianotti at "The 50th Anniversary of Hadron Colliders at CERN"

Summary and Prospects

- Rich progress and potential from the electroweak and top physics
 - Precise measurements, rare process discovery
 - NNNLO/polarization/interference/global...
 - \circ Tools to explore unknown: QE, Lorentz Violation, $0\nu\mu\mu...$
- High energy, High Luminosity, High multiplicity
 - High opportunities although with challenges!

Quantity	Current precision	FCC-ee stat. (syst.) precision	Required theory input	Available calc. in 2019	Needed theory $\operatorname{improvement}^{\dagger}$
$\frac{m_{\rm Z}}{\Gamma_{\rm Z}}$ $\sin^2 \theta_{\rm eff}^{\ell}$	$\begin{array}{l} 2.1 {\rm MeV} \\ 2.3 {\rm MeV} \\ 1.6 \!\times\! 10^{-4} \end{array}$	$\begin{array}{l} 0.004~(0.1){\rm MeV}\\ 0.004~(0.025){\rm MeV}\\ 2(2.4)\times10^{-6} \end{array}$	non-resonant $e^+e^- \rightarrow f\bar{f},$ initial-state radiation (ISR)	NLO, ISR logarithms up to 6th order	NNLO for $e^+e^- \rightarrow f\bar{f}$
m_W	$12{ m MeV}$	0.25 (0.3) MeV sub-MeV precision	lineshape of $e^+e^- \rightarrow WW$ near threshold	NLO (ee \rightarrow 4f or EFT framework)	NNLO for ee \rightarrow WW, W \rightarrow ff in EFT setup
HZZ coupling		0.2%	cross-sect. for $e^+e^- \rightarrow ZH$	$\frac{\text{NLO} + \text{NNLO}}{\text{QCD}}$	NNLO electroweak

FCC feasibility Mid-term report - Deliverable #8, physics and Experiment

Backup

EFT for multi-boson processes

SMEFT

Wilson Coefficient	Operator
$C_W (C_{WWW})$	$\epsilon^{abc}W^{a u}_{\mu}W^{b ho}_{ u}W^{a\mu}_{ ho}$
C_{HD}	$ H^{\dagger}(D_{\mu}\Phi) ^{2^{\prime}}$
C_{HWB}	$H^{\dagger}\sigma^{a}\Phi W^{a}_{\mu u}B^{\mu u}$
$C_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$C_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$C_{Hq}^{(1)}$	$(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$C^{(3)}_{Hq}$	$(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
C_{Hud}	$i\left(\tilde{H}^{\dagger}D_{\mu}H\right)\bar{u}_{R}\gamma^{\mu}d_{R}$
C_{ll}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$
C_{Hd}	$(H^{\dagger}i \overleftrightarrow{D}_{\mu} H)(\bar{d}_{p} \gamma^{\mu} d_{r})$

Table 1: The various other dim-6 EFT operators.

EWDim6/HISZ

The minimal set of dimension-6 operators explored in CMS in WW and WZ final states are the following:

$$\mathcal{D}_{WWW} = \text{Tr} \left[W_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho} \right] \tag{1.1}$$

$$\mathcal{O}_W = (D_\mu \Phi)^\dagger W^{\mu\nu} (D_\nu \Phi) \tag{1.2}$$

$$\mathcal{O}_B = (D_\mu \Phi)^\dagger B^{\mu\nu} (D_\nu \Phi) \tag{1.3}$$

which are the three C and P conserving operators. In addition, there are two additional C and P violating operators are:

$$\mathcal{O}_{\tilde{W}WW} = \text{Tr} \left[\tilde{W}_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho} \right] \tag{1.4}$$

$$\mathcal{O}_{\tilde{W}} = (D_{\mu}\Phi)^{\dagger} \tilde{W}^{\mu\nu} (D_{\nu}\Phi) \tag{1.5}$$

These operators seem to be defined in an *ad-hoc* basis first making their appearance in Ref. [1] and subsequently in Ref. [2].

- K. Hagiwara et al. "Low energy effects of new interactions in the electroweak boson sector" Phy. Rev. D Vol 48 No. 5
- [2] C. Degrande et al. "Effective Field Theory: A Modern Approach to Anomalous Couplings" arXiv:1205.4231

$$\underline{\mathsf{Ref}}\qquad \mathcal{O}_{WWW}=\frac{g^3}{4}Q_W\,,$$

Higgs without Higgs

TABLE I. Each effect (left-hand column) can be measured as an on-shell Higgs coupling (diagram in the HC column) or in a highenergy process (diagram in the HwH column), where it grows with energy as indicated in the last column.

HCs are associated with an EFT Lagrangian $\mathcal{L} = \sum_i c_i \mathcal{O}_i / \Lambda^2$, consisting in particular of the dimensionsix operators [12,13],

$$\mathcal{O}_{r} = |H|^{2} \partial_{\mu} H^{\dagger} \partial^{\mu} H, \qquad \mathcal{O}_{y_{\psi}} = Y_{\psi} |H|^{2} \psi_{L} H \psi_{R},$$

$$\mathcal{O}_{BB} = g^{\prime 2} |H|^{2} B_{\mu\nu} B^{\mu\nu}, \qquad \mathcal{O}_{WW} = g^{2} |H|^{2} W^{a}_{\mu\nu} W^{a\mu\nu},$$

$$\mathcal{O}_{GG} = g^{2}_{s} |H|^{2} G^{a}_{\mu\nu} G^{a\mu\nu}, \qquad \mathcal{O}_{6} = |H|^{6}, \qquad (1)$$

with Y_{ψ} the Yukawa coupling for the fermion ψ . [Note that the parameters in Eq. (3) can be put in correspondence with other parametrizations of HCs: via partial widths $\kappa_i^2 = \Gamma_{h \to ii} / \Gamma_{h \to ii}^{\text{SM}}$ [14], via Lagrangian couplings in the unitary gauge g_{hii} [13,15], or via pseudo-observables [16].]

The operators of Eq. (1) have the form $|H|^2 \times O^{SM}$, with O^{SM} a dimension-four SM operator (i.e., kinetic terms, Higgs potential, and Yukawa couplings) times

https://indico.cern.ch/event/1281608/attachments/2682026/4652614/LAB_cern_seminar_WprecisionNEW.pdf

Revisit ATLAS measurement with profile likelihood (PLH) fitting

- Advantage:
 - (in situ) constrain experimental & modelling systematic uncertainties
 - + adding modern PDF sets
- Disadvantage:

ATLAS

New

MW

- Computational expensive
- Several 1000 Nuisance Parameter (NP) → robust systematic model

- New data-driven multijet Background estimation
 - $\Delta m_W = 1.9$ MeV and reduction unc. by 2 MeV
- Better evaluation of EW uncertainties
 - Increase of 1-2 MeV unc.
- Recovering data in the electron channel
 - Increase statistics by 1.5%
- Add parametric uncertainty on $\Gamma(W)$

In pp collision: different cross section for W+ and W- and different dynamics.

- ▶ kinematic distributions & signal yields in the different categories have additional constraining power on the PDFs unc. (in situ constraint)
- ▶ With profiling of PDF uncertainty it is expected :
 - ▶ reduction of ∆m_w PDFs envelope
 - reduction impact of PDF uncertainties (previous measurement $\delta^{(PDF)}m_w \pm 9-10 \text{ MeV}$)

https://indico.fnal.gov/event/59091/contributions/271335/attachments/168905/226538/SMATLHC23-AMOROSO.pdf

	DO	CDF (old/new)	ATLAS (old/new)	LHCb
Momentum scale	15	7/3	8.4 / 6.8	7
Efficiency	-	- / 0.4	5.0 / 4.0	2
Background	2	3 / 3.3	4.6 / 2.4	2
EW ho	7	4 / 2.7	5.7 / 6.0	9
p _T ,Y modelling	2	5/2	5.9 / 3.5	11
Ai modeling	-	- / -	5.8 / 3.5	10
PDF	10	10 / 3.9	9.0 / 7.7	9
Total sys.	20	15 / 6.9	17.2 / 15.5	22
Statistical	11	12 / 6.4	7.2 / 4.9	23
Total	23	19 / 9.4	18.7 / 16.3	32

UNCERTAINTIES COMPARISON

W Mass Combination

COMBINATION STRATEGY

- Measurements performed at different times, using different PDFs and QCD models: need to translate them first to a common baseline
- O Correct all measurements to a common PDF and QCD model
- O Combine them with correlations

Procedure decomposed into generator/QCD and PDF effects

$$m_{W}^{new} = m_{W}^{ref} - \delta m_{W}^{QCD} - \delta m_{W}^{PDF} \qquad \begin{array}{c} \delta m_{W}^{PDF} \text{ correction to reference PDF} \\ \\ \text{published} & \text{Improved} & \text{PDF} \\ \text{value} & \text{predictions} & \text{extrapolation} \end{array} \qquad \begin{array}{c} \delta m_{W}^{PDF} \text{ correction to reference PDF} \\ \end{array}$$

13

36.3fb⁻¹ 13 TeV CMS Top Mass 36.3 fb⁻¹ (13 TeV) 36.3 fb⁻¹ (13 TeV) A.U A.u. CMS CMS • Data - Post-fit 68% CL 95% CL Data - Post-fit 68% CL 95% CL **m**,^{**MC**} from profiled maximum-likelihood fit $4000 - \mu + jets$ μ + jets 0.4 using 5 observables Nuisance parameters for syst. uncertainties 2000 0.2 Possible to constrain systematics with data 36.3 fb⁻¹ (13 TeV) Data/Post-fit 56'0 56'0 Data/Post-fit 0.98 320 320 320 Normalized distribution jets $1D < \Delta m_{t} > = 0.63 \text{ GeV}$ CMS 0.7 + jets 2D $<\Delta m > = 0.51 \text{ GeV}$ Simulation + jets $3D <\Delta m_{t} > = 0.46 \text{ GeV}$ 200 250 300 1500.6 + jets 4D $<\Delta m_{i}> = 0.40 \text{ GeV}^{-1}$ m^{fit}_t[GeV] + jets 5D $<\Delta m_{\rm i}> = 0.37 \, {\rm GeV}^-$ **Template Bins** 0.5 m_t^{fit} \rightarrow for m₊ > parametrized 0.4 reco \rightarrow light quark JES m_w'` 0.3 $= (p_T^{b1} + p_T^{b2})/(p_T^{q1} + p_T^{q2}) \rightarrow$ R_{bq} b-JES binned $red = m_{lb} reco / m_t^{fit}$ 0.2 \rightarrow for lep syst. m m_{lb}^{reco} (P_{gof} < 0.2) \rightarrow for full statistics 0.1 0.3 0.5 0.6 0.7 0.4 $\Delta m_{\rm t}$ [GeV] TOP2023 - Mikael Myllymäki 7/27

Profiled maximum-likelihood fit

arXiv:2302.01967 (submitted to EPJC)

tt lepton+jets

ATLAS full phase space Z measurement

- First precise measurement at the LHC in the full phase space of the decay leptons (/s = 8 TeV, L=20.2fb⁻¹)
 - Statistically dominated measurement
 - Negligible theoretical uncertainties as there is no direct extrapolation to full phase space
 - Cross sections are parameters of the fit. Fit parameters are 8A_i + 1 cross section in pT-Y 176 bins

$$\frac{d\sigma}{dpdq} = \frac{d^3\sigma^{U+L}}{dp_T dy dm} \left(1 + \cos^2\theta + \sum_{i=0}^7 A_i(y, p_T, m) P_i(\cos\theta, \phi) \right)$$

- Wy fiducial cross section measurement based on fit to m_{ly} distribution:
 - $\sigma = 15.44 \pm 0.05$ (stat) ± 0.84 (exp) ± 0.12 (theory) pb
- Theoretical cross sections:
 - MadGraph5_aMC@NLO 0+1 jets at NLO: 15.44 ± 1.24 pb
 - POWHEG with <u>"NLO competition" scheme</u>: 22.45 ± 3.21 pb
- Limits on dimension 6 EFT operators based on photon $p_{\scriptscriptstyle T}$ distribution

Coefficient	Exp. lower	Exp. upper	Obs. lower	Obs. upper
c_{WWW}/Λ^2	-0.85	0.87	-0.90	0.91
c_B/Λ^2	-46	45	-40	41
$c_{\bar{W}WW}/\Lambda^2$	-0.43	0.43	-0.45	0.45
$c_{\bar{W}}/\Lambda^2$	-23	22	-20	20

DNN reweighting

Possible to reweight a distribution using a DNN [arXiv:<u>1907.08209</u>]

→Acts as a **multi-dimensionnal reweighting** of the input MC sample

4 DNN **trained on polarised Madgraph samples** to discriminate one joint-polarisation states against the inclusive : event-by-event output used in **reweighting**

Reweighting DNNs input variables

Wyy observation ATLAS-CONF-2023-005

- Dominant background from non-prompt leptons and photons
- Main source of systematics due to data-driven bkg estimates

5.6 (5.6)*σ* obs.(exp.)

Observation in SSDL and ML channels

First observation of four top production at both ATLAS and CMS

- Re-analysis of Run 2 datasets
 - Supersede previous results
- Profit significantly from general improvements in lepton and jet selection:
 - Better reconstruction methods
 - Improved b-tagging
 - Better lepton identification methods
- Major improvements in analysis methods
 - Stronger machine learning discriminants: GNNs (ATLAS) or multiclass BDTs (CMS)
 - Better handles on ttX backgrounds

https://indico.cern.ch/event/1233341/timetable/?view= standard#15-4-top-measurements-atlascms

ATLAS: EPJC 83 (2023) 496 CMS: arXiv:2305.13439 (submitted to PLB)

VBS WY Phys. Rev. D 108 (2023) 032017

 $\sigma_{\rm EW}^{\rm fid} = 23.5 \pm 2.8 \,({\rm stat})^{+1.9}_{-1.7} \,({\rm theo})^{+3.5}_{-3.4} \,({\rm syst}) \,{\rm fb} = 23.5^{+4.9}_{-4.7} \,{\rm fb}.$

6.0 (6.8) σ observed (expected)

- Fiducial and differential cross sections;
- Stringent limits on aQGCs: fM,2-4 and fT6-7

ATLAS-CONF-2023-062

Run3 ZZ

	Measurement	MC prediction	MATRIX prediction
Fiducial	$36.7\pm1.6(\mathrm{stat})\pm1.5(\mathrm{syst})\pm0.8(\mathrm{lumi})$ fb	$36.8 \stackrel{+4.3}{_{-3.5}} { m fb}$	$36.5\pm0.6~{\rm fb}$
Total	$16.9\pm0.7(\mathrm{stat})\pm0.7(\mathrm{syst})\pm0.4(\mathrm{lumi})~\mathrm{pb}$	17.0 $^{+1.9}_{-1.4}~{\rm pb}$	$16.7\pm0.4~\rm{pb}$

Inclusive & differential measurements

- Compares to state-of-art MC
- Well in agreement with SM predictions
- Done using a new light data format developed for Run 4

https://indico.fnal.gov/event/59091/contributions/270411/attachments/168822/226374/hmilder_smatlhc2023.pdf

SMEFT impact example

Conclusion

- Presented EFT combination programme of ATLAS, CMS, and LHC EFT WG
- Mainly discussed first ATLAS global (EWPO+EW+Higgs) combination

Highlighted six main challenges

- 1. Number of degrees of freedom \rightarrow requires effort but (surprisingly) manageable
- 2. Precise predictions \rightarrow needed for SM and SMEFT
- 3. SM assumption of interpreted measurements \rightarrow requires ad-hoc fixes or dedicated SMEFT measurements
- 4. Overlap and correlations \rightarrow so far moderate impact but sometimes difficult to assess even within collaboration
- 5. Validity \rightarrow possibly most serious challenge, competing proposals, difficult to implement for large combination

12 July 2023 20 / 20

6. ATLAS+CMS combination \rightarrow still in infancy, requires coordination and harmonization

ATLAS and CMS Results

ATLAS: $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23140 \pm 0.00021 \text{ (stat.)} \pm 0.00024 \text{ (PDF)} \pm 0.00016 \text{ (syst.)}$

CMS: $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23101 \pm 0.00036 \,(\text{stat.}) \pm 0.00031 \,(\text{PDF}) \pm 0.00018 \,(\text{syst.}) \pm 0.00016 \,(\text{theo.})$

- Uncertainties are significantly reduced relative to previous measurements, now approaching Tevatron precision:
 - ATLAS: 0.23080 \pm 0.0012 (ATLAS 7 TeV) \rightarrow 0.23140 \pm 0.00036 (ATLAS 8 TeV)
 - CMS: 0.22870 \pm 0.0032 (CMS 7 TeV) \rightarrow 0.23101 \pm 0.00053 (CMS 8 TeV)
- ▶ Not including ee_{CF} , ATLAS $ee_{CC} + \mu\mu_{CC}$ comparable to CMS result.

Town	11-0:11	
lonv Kwan	(MCGIIII)	Iniversity

SM@LHC 2021

April 26–30, 2021 10 / 13

Eur.Phys.J.C 83 (2023) 4, 269, *Eur.Phys.J.C* 83 (2023) 6, 501 (erratum)

TOP Mass

Source	m_{top} precision (MeV)		
	Optimistic	Conservative	
Statistics	9	9	
Theory	9	26	
Quick scan	3	3	
α_S	17	17	
Top width	10	10	
Experimental efficiency	5	45	
Background	4	18	
Beam energy	2	2	
Luminosity spectrum	3	5	
Total	25	59	

CEPC

TOP MEASUREMENTS FROM THRESHOLD SCAN @FCC-ee

With 200 fb⁻¹ FCC-ee can measure $m_{top}(\Gamma_{top})$ with ~17(45) MeV statistical accuracy. *Systematics*: 3MeV from center of mass energy, 5MeV from α_s (2x10-4 as measured at lower energy) and ~40MeV from theory uncertainties (NNNLO)

Rich Physics at Muon Collider

arXiv:2201.07808

Tau at TeV scale, flying several cms, sensitive to tau g-2

Displaced Tau reconstruction: tracker

arXiv:2107.13581 LL Polarized ZZ scattering >5σ with 3/ab at 14 TeV MC

Closer Z decay products: finer calorimeter

arXiv:2109.01265 Leptoquark searches B anomaly

Flavor tagging: Tracker, vertex

CMS-PAS-FTR-22-001

HL-LHC, FCChh/SPPC

6th FCC Physics Workshop

