

Status of WIMP Searches: from the sky and underground

Jianglai Liu

Tsung-Dao Lee Institute and School of Physics and Astronomy Shanghai Jiao Tong University

Disclaimer: This is a very vast field, so I have to make hard and personal choices on what's covered here.

Special thanks to Dr. Yi Tao, Mengjiao Xiao, and Sming Tsai for materials

WIMP thermal freeze-out

Early Universe Boltzmann Equation

$$0.23 = \Omega_{\chi} \approx \frac{6 \times 10^{-27} \, cm^3 / s}{\langle \sigma_{ann} \mathbf{v} \rangle}$$

Requires: $\langle \sigma_{ann} v \rangle = 3 \times 10^{-26} \text{ cm}^3/\text{s}$

Weak-scale coupling

$$\langle \sigma_{ann} \mathbf{v} \rangle \sim \frac{\alpha_w^2}{M^2} \sim \frac{\alpha_w^2}{(1 \text{TeV})^2}$$

$$\approx O(10^{-26} \text{ cm}^3/\text{s})$$

A fully testable idea

Dark Matter Indirect Detection

Dark Matter Indirect Detection

- Directly probes process that sets DM abundance!
 - But, large systematic uncertainties
 - Comic ray propagation uncertainty
 - Hadronic interaction
 - Backgrounds related to astrophysical sources
 - DM distribution profiles
 - DM annihilation final states

•

GC "GeV excess"

D. Hooper and L. Goodenough, PLB (2011) Abazajian & Kaplinghat (2012), Gordon & Macias (2013), Calore, Cholis, Weniger (2015), Ackermann, et al. (2017)

Interpretation highly model dependent, e.g. data may be at tension with pulsar interpretation

Dwarf galaxy: DM hypothesis checks

Positron excess

 10^{2}

Sum

 10^{1}

10

 $\Phi_{e^+}/(\Phi_{e^+} + \Phi_{e^-})$

Geminga

B0656+14

Other Pulsar

9

 10^{3}

Antiproton excess

Cui, Yuan, Tsai, Fan, PRL 2017 Cuoco, Krämer, and Korsmeier, PRL 2017

Zhu, Cui, Xia, Yu, Huang, Yuan, Fan, PRL (2022)

Anti-Helium

2018: "To date, we have observed *eight* events...with Z = -2. All eight events are in the helium mass region." - S. Ting (La Palma, AMS overview)

New experiment on anti-matter

• GAPS: looking into anti-p and anti-d at lower KE

First flight: 2024!

Current exclusion and sensitivity: global status

- For higher mass WIMPs, the current searches are running out-of-steam
- Bigger and more sensitive ground gamma array (viewing GC!)

Upcoming instruments: CTA and SWGO

SWGO: 100 GeV - PeV, large field of view (45 degrees), R&D

Closing the WIMP window: neutrinos!

Rev. Mod. Phys. 93, 35007 (2021)

Closing the WIMP window: neutrinos!

A fully testable idea

DM direct detection: classical beam experiment

Global status: hide & seek

2104.07634, APPEC report on dark matter direct detection

Nobel-liquid dual-phase time projection chamber

Liquid xenon experiments

Sanford Lab, LZ, 7 ton

LNGS, XENONnT, 6.5 ton

Ísland

South Africa

CJPL, PandaX-4T, 3.7 ton

Росси

First results from multi-ton xenon experiments

- Exposure: 0.63 tonne•year
- Sensitivity improved from PandaX-II final analysis by 2.6 times (40 GeV/c²)

First results from multi-ton xenon experiments

How dark is dark matter?

Nature 618, p47–50 (2023)

$$\mathcal{L} = Qe \bar{\chi} \gamma^{\mu} \chi A_{\mu} + \frac{\mu_{\chi}}{2} \bar{\chi} \sigma^{\mu\nu} \chi F_{\mu\nu} + i \frac{d_{\chi}}{2} \bar{\chi} \sigma^{\mu\nu} \gamma^{5} \chi F_{\mu\nu} + b_{\chi} \bar{\chi} \gamma^{\mu} \chi \partial^{\nu} F_{\mu\nu} + a_{\chi} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi \partial^{\nu} F_{\mu\nu}$$

Milicharge, charge radius, electric dipole, magnetic dipole, anapole
$$Qe$$

$$i = \frac{10^{-1}}{10^{-4}}$$

$$\int U^{-10} + \frac{10^{-2}}{10^{-4}}$$

$$\int U^{-10} + \frac{10^{-2}}{10^{-4}}$$

$$\int U^{-10} + \frac{10^{-2}}{10^{-4}}$$

$$\int U^{-10} + \frac{10^{-2}}{10^{-4}}$$

DARWIN/XLZD

40/60-ton LXe TPC

General-purpose observatories on

- Dark matter
- Neutrinos
- Neutrinoless double beta decay (¹³⁶Xe)
- Other ultra-rare phenomena

PandaX-xT

- Step-wise upgrade towards 43ton (active), 47-ton (total) natural xenon: hinges on the advantage of CJPL, leverages technological challenges, and maintains continuous scientific output
- Technological readiness for a competitive 0vDBD program will mature along the way
- Versatile configuration with isotopic-separated 136Xe in the next future

Global Ar Collaboration

C. Galbiati, UCLA-DM 2023

Since 2017

The Global Argon Dark Matter Collaboration (GADMC)

GADMC unified in a single Collaboration more than 400 scientists interested in DM searches with argon to explore heavy (and light) dark matter to the neutrino floor and beyond

DarkSide-20k => ARGO

Industrial-scale underground Ar mass production

C. Galbiati, UCLA-DM 2023

Status of DS-20K

SI sensitivity: future projection

APPEC DM report: 2104.07634

Low mass DM detection techniques

Atomic inelastic scattering: accessing full DM KE-binding. Essig, Mardon, Volansky, PRD 85, 076007 (2012)

S2-only approach

Tight limits on DM-e scattering

Migdal effects in DM-N scattering

- Reformulated: Ibe et al., JHEP 2018, 194 (2018); Dolan et al., PRL 121, 101801 (2018)
- Direct DM-e ionization and Midgal-induced ionization probability are closely related, Essig, Pradler, Sholapurkar, and Yu, PRL 124, 021801 (2020)

Low mass DM with Migdal

Widely used to extend to search to lower mass

However, not yet seeing it yet in neutron calibration!

Skipper CCD

- Old idea: small amount of energy by DM-N or DM-e can be converted to e-h pairs in CCD pixels
- Si: 1.2 eV for an e-h pair production

Cryogenic bolometer

- Energy deposition converted to lattice vibration
- $\delta T = \delta E/C$, where C $\propto T^3$, so low temp is the key (5 mK)
- Temperature change is "traditionally" measured by transitional edge sensor (TES)
- Some accompanying energy in ionization or photons

Cryogenic bolometers

SuperCDMS (Ge/Si)

Cryogenic bolometers

Detector characterization highlights

SuperCDMS, PRL 131, 091801 (2023) Ionization yield to NR for Si down to 100 eV Nucleus, PRL 130, 211802 (2023) First observation of n-W capture NR energy

Low energy excesses

- Physics? Unlikely!
- Material background
- Structure issues (stress, etc.)

The Excess Workshop: 2202.05097

SI sensitivity: future projection

APPEC DM report: 2104.07634

A combined statement?

Combined studies including all DM searches, e. g. PRL 129, 091802 (2022), Fan, Tan, Tsai, Wu (inert-two-Higgs-doublet model)

• But the short answer is: keep searching!!!

- WIMP searches: huge experimental processes in the past 15-20 years
 - Indirect searches: hints/bounds coexist
 - Direct searches: no convincing signals
- Significant "traditional" WIMP parameters unexplored (with known experimental techniques!)
- Both theorists and experimentalists are thinking harder on alternatives (low-mass)
- Keep the flagship effort going, while investing on alternatives