

Neutrino mass measurements & neutrinoless double beta decay

- The quest for neutrino mass and nature
- Search for neutrinoless double beta
- Direct search for absolute neutrino mass
- Conclusions

.#

-

Christian Weinheimer – University of Münster

-

living.knowledge

Current most urgent questions in neutrino physics

- Mass ordering: $m(v_3) > m(v_{2,1})$ or $m(v_{2,1}) > m(v_3)$?
- CP violating phase δ_{CP} in mixing matrix U_{PMNS}: connected to baryon asymmetry of universe via leptogensis ?

• Neutrino particle character ?

Universität Münster

are neutrinos their own antiparticles (Majorona)? leptogenesis might explain baryon asymmetry of universe, Seesaw

 \rightarrow seach for $0\nu\beta\beta$

• Absolute neutrino mass scale ?

very important: 10^9 more neutrinos than atoms in the universe very important: very small m_v are probably due to more than just the Yukawa coupling to the Higgs

- \rightarrow cosmology: $\sum_{i} m(v_i) \approx 0.12 \text{ eV} \text{ (CMB+BAO)}$
- \rightarrow seach for $0\nu\beta\beta$
- \rightarrow direct neutrino mass search
- Is there a 4th or even a 5th light but sterile neutrino ?
 - \rightarrow also direct neutrino mass search

Search for neutrinoless double beta decay: the door to the nature of neutrinos and BSM

0νββ

 $\boldsymbol{m}_{\boldsymbol{\beta}\boldsymbol{\beta}} \coloneqq \left| \sum_{i} U_{ei}^{2} \cdot \boldsymbol{m}(\boldsymbol{v}_{i}) \right|$ sensitive to Majorana v only, nuclear matrix elements

Discovery of $0\nu\beta\beta$ would be BSM: Majorana ν & lepton number violation

Exp. sensitivity:

$$T_{1/2}^{0\nu} \propto \begin{cases} a \cdot \varepsilon \cdot M \cdot t & \text{for bg B} = 0\\ a \cdot \varepsilon \cdot \sqrt{\frac{M \cdot t}{B \cdot \Delta E}} & \text{for bg B} > 0 \end{cases}$$

 $M_{0\nu}(A,Z)$ range: factor ≈ 3

Disclaimer:

 $m_{\beta\beta}$ limits are valid only, if $0v\beta\beta$ dominantly via v exchange

M. Agostini, G. Benato, J.A. Detwiler, J. Menéndez, F. Vissani, Rev. Mod. Phys. 95 (2023) 025002

⁷⁶Ge: GERDA & Majorana (final result) & LEGEND-200

GERDA: enrichment of ⁷⁶Ge: \approx 87%

exposure: energy resolution: $\approx 3 \text{ keV}$ (FWHM) background index:

 \rightarrow lower limit:

 \rightarrow upper mass limit:

127.2 kg*yr

Phys. Rev. Lett. 125, 252502 (2020)

 $B = 5.2^{+1.6}_{-1.3} \cdot 10^{-4}$ counts/(keV kg yr)

 $T_{1/2}^{0\nu} > 1.8 \cdot 10^{26} \text{ yr}$ (90% C.L., frequentist)

 $m_{\beta\beta} < 79 - 180 \text{ meV}$ (without g_A quenching)

Majorana Demonstrator: $B = 15.7^{+1.4}_{-1.3} \cdot 10^{-3}$ counts/(keV kg yr) $T_{1/2}^{0\nu} > 8.3 \cdot 10^{25}$ yr \rightarrow lower limit:

Phys. Rev. Lett. 130, 062501 (2023)

LEGEND-200: enriched ⁷⁶Ge (>90%) BEGe/ICPC detectors \rightarrow event topology & active veto based on GERDA+Majorana technologies since 03/2023 running: 10 strings with ≈ 140 kg $B = 1.0 \cdot 10^{-4} \text{ cts/(keV kg yr)}$ goals: M Willers, 12 strings Kv Sturm sensitivity: $T_{1/2}^{0\nu} = 10^{27}$ yr **TAUP 2023**

CUORE at LNGS

nat. abundance of ¹³⁰Te: $\approx 34.2\%$ active mass Te₂O (¹³⁰Te): 742 kg (206 kg) energy resolution: 7.4 keV (FWHM) by NTD-Ge readout background index: $B = 1.30(3) \cdot 10^{-2}$ counts/(keV kg yr)

\rightarrow lower limit:

1000

1500

 $2\nu\beta\beta$ half life:

Events [counts keV⁻¹]

10 =

500

Reconstructed Energy [keV]

2ndTY CUORE

preliminary

0.001

mlightest [eV]

Energy (keV)

- Li²¹⁰⁰MoO₄, ^{48depl}Ca¹⁰⁰MoO₄ scintillating crystal cryogenic bolometers Detection of both heat and light signals to discriminate β/α events
- *Q*-value: 3.034 MeV
- Metallic magnetic calorimeter (MMC) + SQUID for signal readout: Fast signal (\approx msec rise-time) and a good energy resolution (\approx 10 keV FWHM

AMoRE-I:

- 6.2 kg (3.0 kg ¹⁰⁰Mo), collected 8 kg yr (3.9 kg yr ¹⁰⁰Mo)
- Background level: $B \approx 3.2 \cdot 10^{-2}$ count/keV/kg/yr

Christian Weinheimer – Future Perspectives in High Energy Physics, ICFA Seminar Nov./Dec. 2023, DESY

AMoRE-II in YemiLab (1000 m depth), better light det., civil work & shielding installation done Sensitivity goal: $T_{1/2}^{0\nu} \sim 4 \cdot 10^{26}$ yr $m_{\beta\beta} \sim 20 - 35$ meV Background level: $B \sim 10^{-4}$ count/keV/kg/yr Preparing start with 90 crystals (27kg) in 2024 to be upgraded to 157 kg in 2025

SC Kim TIPP2023 & courtesy: Yeongduk Kim

SNO+ at SNOLab with 780 t of liquid scintillator (2.2 g/L PPO in LAB)

Water Phase: completed

- measured the ⁸B solar neutrino flux with very low backgrounds
- set world-leading limits on invisible nucleon decay, *Phys.Rev.D* 105 (2022) 11, 112012
- first 3.5σ evidence for reactor antineutrinos through inverse beta decay Phys. Rev. Lett. 130, 091801 (2023)

Pure Scintillator Phase:

- detecting low energy ⁸B solar neutrinos
- detecting reactor (and geo) antineutrinos to independently measure Δm^2_{12}
- supernova neutrino live

Double Beta Decay Phase:

- add up to 4,000 kg of ¹³⁰Te to the detector
- with sensitivity in the IM Ordering parameter space
- Tellurium systems are built ready for operation:
 Full-scale test batches in 2022 and 2023
- Goal: Begin loading Te in the detector in 2024

Christian Weinheimer – Future Perspectives in High Energy Physics, ICFA Semina

courtesy: Christine Kraus

New Physics Sensitivity: Phase-Space-Weighted Half-life

KamLAND-ZEN

Liquid scintillator detector KamLAND in Kamioka with nylon balloon with LS and DBD isotope ¹³⁶Xe

• Q-value 2.458 MeV, dissolved into LS ~3% by weight, enrichment ~90%

KamLAND-Zen 400: past

320-380 kg of Xe Data taking 2011-2015

courtesy: Patrick Decowski & Azusa Gando

Latest result:

KamLAND-Zen 800 (523.4 d): $T_{1/2}^{0\nu} > 2.0 \cdot 10^{26} \text{ yr}$

 $m_{etaeta} < 36 - 156$ meV

Phys. Rev. Lett. 130, 051801 (2023)

KamLAND2-Zen: future

1 t of Xe Better energy resolution

Goal: $\sigma(2.6~{
m MeV})$: 4%
ightarrow 2% $m_{etaeta} pprox 20~{
m meV}$

PoS (NOW2022) 067

NEXT: a high pressure ¹³⁶Xe-enriched TPC

Advantages: High energy resolution (1% FWHM), double electron from vertex ID, goal Ba⁺⁺ tagging

Universität Münster

somewhat

similar:

PandaX-III

Status: NEXT-White: precision measurement of DBD half-life by measuring with/without enriched xenon NEXT-100: target background rate: 4 × 10⁻⁴ counts/(keV·kg·yr), or ~1 count/(ROI·yr) is being closed NEXT-HD: 1t symmetric TPC with central electrodes, tracking plane with dense SiPMs,..

Christian Weinheimer – Future Perspectives in High Energy

nEXO: a single phase ¹³⁶Xe-enriched LXe TPC

nEXO: LXe TPC

enriched 136 Xe:5 tenergy resolution: ≈ 46 keV (FWHM)background index: $B = 7 \cdot 10^{-5}$ counts/(FWHM kg yr)

- → expected sensitivity (10 yr): $T_{1/2}^{0\nu} > 1.35 \cdot 10^{28}$ yr (90% C.L.)
- ightarrow expected sensitivity (10 yr): $m_{etaeta} < 5 20$ meV

G Adhikari et al. (nEXO Coll.) J. Phys. G: 49 (2022) 015104

	EXO-200:	nEXO:	Improvements:		
Vessel and cryostat	Thin-walled commercial Cu w/HFE	Thin-walled electroformed Cu w/HFE	Lower background		
High voltage	Max voltage: 25 kV (end-of-run)	Operating voltage: 50 kV	Full scale parts tested in LXe prior to installation to minimize risk		
Cables	Cu clad polyimide (analog)	Cu clad polyimide (digital)	Same cable/feedthrough technology, R&D identified 10x lower bkg substrate and demonstrated digital signal transmission		
e ⁻ lifetime	3-5 ms	5 ms (req.), 10 ms (goal)	Minimal plastics (no PTFE reflector), lower surface to volume ratio, detailed materials screening program		
Charge collection	Crossed wires	Gridless modular tiles	R&D performed to demonstrate charge collection with tiles in LXe, detailed simulation developed		
Light collection	APDs + PTFE reflector	SiPMs around TPC barrel	SiPMs avoid readout noise, R&D demonstrated prototypes from two vendors		
Energy resolution	1.2%	1.2% (req.), 0.8% (goal)	Improved resolution due to SiPMs (negligible readout noise in light channels)		
Electronics	Conventional room temp.	In LXe ASIC- based design	Minimize readout noise for light and charge channels, nEXO prototypes demonstrated in R&D and follow from LAr TPC lineage		
Background control	Measurement of all materials	Measurement of all materials	RBC program follows successful strategy demonstrated in EXO-200		
Larger size	>2 atten. length at center	>7 atten. length at center	Exponential attenuation of external gammas and more fully contained Comptons		

nEXO ready for being asked to go through DOE CD 1

courtesy Giorgio Gratta

CUPID: CUORE Upgrade With Particle IDentification

Thermal Sensor

Light

Thermal

Sensor

Energy

Release

Light Detector

Absorber

Next generation decay $0\nu\beta\beta$: **replace** the CUORE TeO₂ detector with 1596 Li₂MoO₄ scintillating bolometers:

- 450 kg of $Li_2^{100}MoO_4$ 240 kg of ¹⁰⁰Mo, Q = 3034 MeV
- 57 towers of 28 crystals, each instrumented with a Light Detector $\rightarrow \alpha$ -rejection

scintillating bolometer technology: enables PID

- **Goals:** fully probe the "Inverted Hierarchy" region improve sensitivity to $m_{\beta\beta}$ by factor of ~5 relative to CUORE energy resolution: 5 - 7 keV (FWHM) background index: $B = 1 \cdot 10^{-4} \text{ counts/(keV kg yr)}$ \rightarrow exp. sensitivity (10 yr): $T_{1/2}^{0\nu} > 1 \cdot 10^{27} \text{ yr}$ (90% C.L.)
- → exp. sensitivity (10 yr): $m_{etaeta} < 13 21$ meV

CUPID-like tower (not enriched) Now in operation @LNGS

Christian Weinheimer – Future Perspectives in High Energy Physics, ICFA Seminar Nov./Dec. 2023, DESY

3o median discovery sensitivity

 $m_{BB} = 18.4 \pm 1.3 \text{ meV}$

 10^{-2}

- 2	023 2024 2025	2026 · 2027 · 2028 · 2029	· 2030 · 2031 · 2032	2033 2034	2035 2036
1			1 1 1		
	Design & Reviews		First Data		Full Data Taking
				1 I I I I I I I I I I I I I I I I I I I	
	Construction, Detector Production & Installation				*Technically driven schedule

Water tank + PMTs (shielding + muon veto)

- Stainless steel cryostat Xenon doped atmospheric LAr
- Neutron moderator + LAr read-out system
- Reentrant tube Underground LAr (UAr)
- Ge detector strings and ULAr read-out system
- PCDR: arXiv:2107.11462
- goals:

 $B = 1.0 \cdot 10^{-5}$ cts/(keV kg yr)

 $T_{1/2}^{0\nu}$ discovery sensitivity: 10^{28} yr

10³⁰

10²⁹

²⁸ 10²⁸ [Xears] 10²⁷ 10²⁷

_[≌] 10²⁶

 10^{-3}

33

• DOE-NP: LNGS Hall C as site for LEGEND-1000

(former location of Borexino), site preparation starts in 2024

- **DOE-NP CD-1** review is scheduled for early summer 2024
- plan to start data taking in 2030

10⁻¹ 1 10 10² Exposure [ton-years]

V. Guiseppe, TAUP 2023

IO m^{min} range

Universität Münster

D. Moore, TAUP 2023, adapted from 2212.11099

DOE-Nuclear Physics Portfolio report 2022:

CUPID, LEGEND-1000, nEXO all successful,

in the Long Range Plan of Nuclear Science in the US 2023 all mentioned on equal footing

In case resources are insufficient to fund all three experiments

(CUPID, nEXO, LEGEND-1000), LEGEND-1000 will receive priority

Others:

Xenon dark matter experiments

will also look for $0\nu\beta\beta$:

LZ, PandaX-4T, XENONnT and DARWIN

(sensitivity: $2.4 \cdot 10^{27}$ yr,

Eur. Phys. J. C 80 (2020) 808)

Complementary ways to the neutrino mass

Direct neutrino mass search

 $m^2(v_e) \coloneqq m_{\beta}^2 \coloneqq \sum_i |U_{ei}|^2 \cdot m^2(v_i)$ no further assumptions needed

a) Time-of-flight measurements only eV sensitivity for very far away, very strong sources, e.g. core-collapse supernova, e.g. SN1987a

 $\rightarrow m_{\nu} < 5.7 \text{ eV}$

b) Kinematics of weak decays, e.g. tritium (β^-), ¹⁶³Ho (EC) measure charged decay products, use *E*-, \vec{p} -conservation

Christian Weinheimer – Future Perspectives in High Energy Phys

No further assumptions are needed: use $E_{\nu}^2 = p_{\nu}^2 + m_{\nu}^2 \rightarrow m_{\nu}^2$ Determine m_{ν}^2 from beta electron spectrum $\beta^{-} : \frac{dN}{dE} = K \cdot F(E,Z) \cdot p \cdot E_{tot} \cdot (E_0 - Ee) \cdot \sum_i |U_{ei}|^2 \cdot \sqrt{(E_0 - E_e)^2 - m^2(\nu_i)}$ phase space: $p_e = E_e = E_v$ \mathbf{p}_{v} 10^{6} **EC:** Also phase space near endpoint 10 Counts [a.u.] $\propto p_{\nu} \cdot E_{\nu}$ 10^{2} deexcitation spectrum, e.g. ¹⁶³Ho 10 10 10 $\propto p_{v} \cdot E_{v}$ 8 0.5 2.0 2.5 1.0 1.5 3.0 Energy [keV] 6 N [a.u.] $m_v = 0 eV$ 2 $m_{v_{1}} = 1 \text{ eV}$ -2-1.5— 1 -0.50.5

 $E-E_0$ [eV]

KArlsruhe TRItium Neutrino experiment KATRIN

A 10¹¹ Bq windowless T₂ source with an high acceptance & eV-resolution integrating spectrometer

KATRIN's future sensitivity and sterile v search

Since 2019 significant improvements

in background rate & systematics much more data taken ...

courtesy : Magnus Schlösser

0.25

0.30

0.12

0.20

Upcoming result from KNM1-5:

- Statistics *6, Systematics * 3
- Sensitivity better than $m_{\nu} < 0.5 \text{ eV}$ •
- Paper (almost) ready for submission

Final result:

statistics systematics

plasma

bg rate overdispersion bg time dependence

bg voltage dependence

0.00

0.05

0.10

0.15

- Based on 1000 days of data taking (completed end of 2025)
- Sensitivity better than $m_{\nu} < 0.3 \text{ eV}$

Search for sterile eV neutrinos:

Christian Weinheimer – Future Perspectives in High Ener

Future: search for sterile keV neutrinos with KATRIN

8

 $\frac{dN}{dE} = \cos^2(\theta) \cdot \frac{dN}{dE}(m_{\nu})$

signature of

sterile neutrino

 $+\sin^2(\theta)\cdot\frac{dN}{dE}(m_4)$

10 12 14 16 18 20

25×101

4th mass eigenstate of neutrino mixed with flavour eigenstates

→ BSM particle, dark matter candidate

Look for the kink in the $\beta\mbox{-spectrum}$

Target sensitivity of $sin^2 \theta < 10^{-6}$

→ TRISTAN phase of KATRIN in 2026/27

requires a new detector & DAQ system with

- large count rates
- good energy resolution

KATRIN⁺⁺ - R&D for the next generation m_{ν} search

Two major improvements:

- differential measurements, not needing ≈ 30 steps to measure $\beta\text{-spectrum}$

- improve energy resolution by quantum sensor (MMC detector array, tof) & by atomic T source

Christian Weinheimer – Future Perspectives in High Energy Physics, ICFA Seminar Nov./Dec. 2023, DESY

ECHo: metallic magnetic calorimeters (MMC):

EC with ¹⁶³Ho cryogenic bolometers: ECHo

ECHo-100k baseline: multiplexing to read-out large # MMCnumber of detectors:12000activity per pixel:10 Bq (2 × 10^{12 163}Ho atoms)

Present status:

High Purity ¹⁶³Ho source: available about 30 MBq Ion implantation system: demonstrated, continuously optimized Superconducting pick-up coil Metallic magnetic calorimeters: succesfull characterization of arrays with ¹⁶³Ho More than 10⁸ ¹⁶³Ho events have been acquired within the ECHo-1k phase: \rightarrow a new neutrino mass limit $\approx 20 \text{ eV}$ is on the way Important steps towards ECHo-100k have been demonstrated: new ECHo-100k array implantation of wafer scale multiplexed readout courtesy: Loredana Gastaldo

Christian Weinheimer – Future Perspectives in High Energy Physics, ICFA Seminar Nov./Dec. 2023, DESY

EC with ¹⁶³Ho cryogenic bolometers: HOLMES

HOLMES: superconducting transition edge sensors (TES) ¹⁶³Ho being implanted in gold absorber read-out: frequency multiplexing

Universität Münster

FA Seminar Nov./Dec. 2023, DESY

Conclusions

- Neutrino mass and 0vββ searches are leading and timely questions of nuclear & (astro)particle physics & cosmology
- Cosmology, search for $0\nu\beta\beta$ and direct search for neurino mass provide complementary imformation
- Search for $0\nu\beta\beta$ is investigating neutrino nature and mass:
 - Current sensitivity $T_{1/2}^{0\nu} \approx 2 \cdot 10^{26}$ yr and $m_{\beta\beta} \approx \mathcal{O}(200 \text{ meV})$ by GERDA, KamLAND-ZEN 800, EXO-200, CUORE ...
 - LEGEND-200 has started
 - Next generation experiments (CUPID, LEGEND-1000, KamLAND2-ZEN, nEXO, ...): $T_{1/2}^{0\nu} \approx 10^{28}$ yr, $m_{\beta\beta} \approx O(20 \text{ meV})$
 - Main challenges: ultra-low background, large mass of DBD isotope (⁷⁶Ge, ¹⁰⁰Mo, ¹³⁶Xe, ¹³⁰Te)
- Direct search for neutrino mass:
 - KATRIN reached sub-eV sensitivity and has much more data, will search for keV sterile neutrinos (TRISTAN-phase)
 - Cryo-bolometers (ECHo, HOLMES) with ¹⁶³Ho aim for (sub)eV-sensitivity with large arrays of multiplexed pixels
 - Project 8 (CRES-technology, similar QTNM) is opening a new road towards sub-eV neutrino mass sensitivity with tritium planned R&D program (KATRIN^{++I}) with atomic T source and quantum sensors: fully IO regime
 - Direct neutrino mass search with tritium at the extreme: towards CvB, R&D with PTOLEMY for the (far) future

Conclusions

- Neutrino mass and $0\nu\beta\beta$ searches are leading and timely questions of nuclear & (astro)particle physics & cosmology
- Cosmology, search for $0\nu\beta\beta$ and direct search for neurino mass provide complementary imformation
- Search for $0\nu\beta\beta$ is investigating neutrino nature and mass:

