Electromagnetic Dipole Moments

Kim Siang Khaw Tsung-Dao Lee Institute, Shanghai Jiao Tong University 2023.11.29

Disclaimer: There are many exciting efforts in this field but only part of them will be covered here. Apologize for omitting any of your experiments.

李战道研究所 TSUNG-DAO LEE INSTITUTE

Many thanks to inputs from P. Schmidt-Wellenburg, G. Venanzoni, P. Winter, X. Fan, B. Lauss, J. Martin, F. Piegsa, S.Y. Hoh!

Complementarity between frontiers

Energy Frontier

New physics through observations of new particles

Precision/Intensity Frontier

New physics through observations of effects of virtual particles

Complementary approaches, allow us to discriminate between various BSM models!

Adapted from Adam West

Overview of EDM experiments

- Category 1: Neutron EDM experiments
 - Traditional, UCN and beam approaches
- Category 2: Paramagnetic atoms/molecules (unpaired electron)
 - Powerful systems for searching electron EDM (ThO, YbF, HfF⁺, ...)
- Category 3: Diamagnetic atoms/molecules (no unpaired electrons)
 - Powerful systems for searching hadronic EDMs (Hg, Xe, Ra, ...)
- Category 4: Storage ring experiments
 - Huge potential but challenging (μ, p, ²H, e)

Complementarity between EDMs

The EDM Community (~700)

- ThO (ACME) @ Yale
- YBF @ Imperial

Full list: https://www.psi.ch/en/nedm/edms-world-wide

PSI nEDM webpage

The association of observable EDMs to their possible fundamental CPV sources, which might be chromo-, quark-, lepton-, and semi-*Ieptonic EDMs, or the QCD "theta" parameter. (A. Ritz, D. Hertzog)*

EDM measurements in a nutshell

- Experiment:
 - Initialize, precess, measure, repeat...

Courtesy: Nick Hutzler (Caltech)

Neutron EDM: nEDM@PSI

Courtesy Bernhard Lauss

Neutron EDM: n2EDM@PSI

High intensity ultracold neutron. (UCN) source at PSI

> solid deuterium based high intensity UCN source in operation since 2011 serves ~ 5x10⁶ UCN every 300s to experiments

Status:

- record magnetically shielded room (MSR) shielding factor 10⁵ at 0.01Hz in 25m³ operating
- 55 km coils for active magnetic shield (AMS) operating
- internal magnetic field system at 1 mT and 60 ppm homogeneity operating
- UCN chambers and beamline commissioning
- start measurement in 2024 500 days for 1.2 x 10⁻²⁷ e·cm sensitivity goal in baseline
- planned 'MAGIC field' phase with further significant improvement

nEDM is part of the European Strategy for Partice Physics and the NUPPEC Lond Range Plan. **Bernhard Lauss**

Neutron EDM: Beam EDM

Courtesy Florian Piegsa

Statistical sensitivity:

$$\sigma_{\text{Beam}}(d_{\text{n}}) \approx \frac{2\hbar}{\eta \tau E \sqrt{N}}$$

$$\sigma(d_{
m ln}) pprox 5 imes 10^{-26}$$
 e cm / day

- New complimentary neutron EDM search using a pulsed beam
- Project based in Bern with proof-ofprinciple experiments at PSI and ILL
- Full-scale experiment intended for ESS, competitive to UCN experiments

Piegsa, PRC 88, 045502 (2013) Chanel et al., EPJ Conf. 219, 02004 (2019) Schulthess et al., PRL 129, 191801 (2022)

Electron EDM: Paramagnetic systems

- Atoms/molecules have extremely large fields
 - ~100 GV/cm for heavy species
 - Maximum lab field ~100 kV/cm
 - eEDM of valence e interacts with the internal field \rightarrow symmetry-violating energy shifts

Quantum Sci. Technol. 5 044011

Improvements are expected in the coming years

ACME, ThO, Harvard/Yale/Northwestern

- Spin precession in cryogenic beam
- $|d_e| < 8.7 . 10^{-29} e cm (2014)$
- $|d_e| < 1.1 . 10^{-29} e cm (2018)$

$$1 \sim d\mathcal{E}_{eff}$$

HfF+, JILA/Boulder

- Spin precession in ion trap
- Long coherence time from trapping
- Current most sensitive limits
- $Id_e I < 4.1.10^{-30} e cm$ Science 381 665 (2023)

Hadronic EDM: Diamagnetics Atoms

¹⁹⁹Hg, Univ. Washington, Seattle

$$\omega_c = \frac{\mu}{\hbar} \left(-\frac{8}{3} \frac{\partial^3 B}{\partial z^3} \Delta z^3 \right) + \frac{4dE}{\hbar}$$

Cancels up to 2nd order gradient noise Same EDM sensitivity as Middle Difference

2016 Seattle Hg-199 EDM experiment:

 $|d_{Ha}| < 7.4 \times 10^{-30} e \,\mathrm{cm}$

Courtesy Brent Garner

Center for Experimental Nuclear Physics and Astrophysics

CENPA

"Large Collaboration"

The Team

Graduate Students Jennie Chen Brent Graner*

Scientific Glassblower Eric Lindahl

Faculty B. R. Heckel

Primary support from NSF * Supported by DOE Office of Nuclear Science

PRL 116.161601 (2016)

Quantity	Expression	Limit	Ref.
\mathbf{d}_n	$S_{Hg}/(1.9 \text{ fm}^2)$	$1.6 \times 10^{-26} \ e \mathrm{cm}$	[21]
\mathbf{d}_p	$1.3 \times \mathbf{S}_{\mathrm{Hg}} / (0.2 \mathrm{~fm}^2)$	$2.0 \times 10^{-25} e \mathrm{cm}$	[21]
\overline{g}_0	$S_{Hg}/(0.135 \ e \ fm^3)$	2.3×10^{-12}	[5]
$ar{g}_1$	$S_{Hg}/(0.27 \ e \ fm^3)$	1.1×10^{-12}	[5]
$ar{g}_2$	$S_{Hg}/(0.27 \ e \ fm^3)$	1.1×10^{-12}	[5]
$ar{ heta}_{QCD}$	$\bar{g}_0/0.0155$	1.5×10^{-10}	[22,23]
$(\tilde{d}_u - \tilde{d}_d)$	$ar{g}_1/(2 imes 10^{14}~{ m cm}^{-1})$	$5.7 \times 10^{-27} \text{ cm}$	[25]
C_S	$\mathbf{d}_{\rm Hg}/(5.9 \times 10^{-22} \ e {\rm cm})$	1.3×10^{-8}	[15]
C_P	$\mathbf{d}_{\rm Hg}/(6.0 \times 10^{-23} \ e {\rm cm})$	1.2×10^{-7}	[15]
C_T	$\mathbf{d}_{\rm Hg}/(4.89 \times 10^{-20} \ e {\rm cm})$	1.5×10^{-10}	see tex

Limits on CP-violating observables from the 199Hg EDM limit (assuming it is the sole contribution to the atomic EDM)

Storage ring for EDM searches

Courtesy Klaus Jungmann

Muon EDM: muEDM@PSI

The frozen-spin approach

Muon EDM Sensivities

BNL g-2 limit: $d_{\mu} < 1.8 \times 10^{-19}$ e cm

Proton EDM: CPEDM

PROTON EDM RING

COSY at Jülich supported by EPPSU as possible site for developing the project

C. Vallée, HCP Summer School 2023

Courtesy Claude Vallée

Particle Physics Beyond Colliders 39

Electron EDM: Storage ring

PLB 843 (2023) 138058

No SR eEDM proposal in the past due to no viable polarimetry at "magic" momentum (the momentum where the electron spin is not affected by the v x E term, ~ 15 MeV)

Overview of MDM experiments

- Category 1: Storage ring/solenoid experiments
 - Traditional, magic momentum approach, pure B-field approach
- Category 2: Penning Traps
 - High precision Penning traps, suitable for stable particle (p,e)
- Category 3: e⁺e⁻ & Pb-Pb Colliders
 - Less precise, suitable for short-lived particles (tau, Baryon)
- High precision comparison of theory-experiment provides a stringent test of SM

Particle	g-factor	Relative uncertainty
Electron	2.002 319 304 361 18(26)	1.3 x 10 ⁻¹³
Muon	2.002 331 841 10(47)	2.3 x 10 ⁻¹¹
Proton	5.585 694 689 3(16)	2.9 x 10 ⁻¹⁰
Antiproton	5.585 694 690 6(60)	1.5 x 10 ⁻⁹

FNAL Muon g-2

Courtesy Graziano Venanzoni and Peter Winter

FNAL Muon g-2: current situation

Experimental outlook

- Plan to publish full dataset in 2025 with 2x precision
- Will reach or slightly surpass precision goal of 140 ppb

Comparison with theory

- Large discrepancy between experiment & theory, FNAL alone gets to 5.0σ
- Recent calculation from lattice and e⁺e⁻ data from CMD-3 show tensions with 2020 theory prediction (being closer to the experimental value)
- Updated prediction expected in 2025 using all available data will likely yield a smaller and less significant discrepancy
- Theory community working hard to:
- Understand discrepancy between dispersive calculation and Lattice QCD
- Scrutinize both new CMD-3 result and former e⁺e⁻ data

T. Aoyama et al. Phys. Rept. 887 (2020)

Courtesy Graziano Venanzoni and Peter Winter

J-PARC Muon g-2/EDM

J-PARC MLF

- Compact storage ring (1/20)

check FNAL/BNL results.

: 450 ppb EDM : 1.5 E-19 ecm

Aiming for data taking from 2028

J-PARC is the only experiment to

Courtesy Mibe Tsutomu

Muon g-2 from Muonium Spectroscopy

Phys. Rev. Lett. 127 (2021) 25, 251801

[Karshenboim et al. PLB 2019]

Electron g-factor

BSM contribution to Electron?

2023 electron g-2 measurement uncertainty (13 x 10⁻¹⁴) & a consistent α determination

Phys. Rev. Lett. 131, 161802 (2023) Physics reports 887, 1 (2020)

Courtesy Xing Fan

Tau g-2 in colliders

Short lifetime: not possible through spin precession approach

e⁺e⁻ collider: DELPHI

PbPb collider: ATLAS

a_τ ∈ (−0.057, 0.024)

Expecting substantial improvements from Run 3 & 4 data!

Slides from Peter Steinberg @ QM 2023

BSM contribution to Tau?

$$a_{\tau}^{\text{BSM}} \sim a_{\mu}^{\text{BSM}} \left(\frac{m_{\tau}}{m_{\mu}}\right)^2 \sim 10^{-6}$$

Various methods to measure at have been proposed:

- radiative tau decays
- channeling in a bent crystal

• γp and heavy-ion reactions at the LHC but these do not reach that level of precision

Control Systematic Uncertainties using e⁻ Beam polarization asymmetries

$$\operatorname{Re}(F_2^{\text{eff}}) = \mp \frac{8(3-\beta^2)}{3\pi\gamma\beta^2\alpha_{\pm}} \left(A_T^{\pm} - \frac{\pi}{2\gamma}A_L^{\pm}\right)$$

With 40 ab⁻¹ of polarized beam data, and 60% efficiency for selecting semileptonic tau decays, the statistical uncertainty would be ~1 x 10⁻⁵

1000 x more precise than current limits

So to get to 1 x 10⁻⁶ would require more statistics as well as higher precisions on $M(\Upsilon(1S))$ and m_{τ}

We would also run on the $\Upsilon(4S)$, so we will need twoloop calculations of Re F^{eff}₂ (100GeV²)

Towards Testing the Magnetic Moment of the tau at 1 ppm

Slides from J. Michael Roney @ SPIN 2023

Summary

- High sensitivity EDM searches and high precision MDM measurements are powerful tools to search for BSM physics
 - Complementary to Energy Frontiers
- Very high mass scale beyond LHC reach can be explored (under some assumptions) EDMs are connected to CPV sources beyond SM
 - Measurements on various species are needed to discriminate between BSM theories
- MDMs provide stringent tests of SM calculations and the CPT symmetry
 - Ongoing puzzles in the muon and electron sector provide a window into deeper understanding of SM and BSM

Many more experiments will go online starting from next year! The moment has arrived for the dipole moments!

