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First quantum revolution: discovery quantum
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§ Discover and understand quantum phenomena
§ Nobel prizes: Max Karl Ernst Ludwig Planck,1918 and Niels Bohr, 1922 
Quantum properties used in several applications: solar cells, laser, etc.  
 In HEP, used in B-factories: 𝑌 4𝑆 → 𝐵 &𝐵	in a coherent antisymmetric quantum state evolving coherently until

one B decays, t0 only at this time, t0, the nature of the other B is defined

Second quantum revolution: quantum technology
Nobel prize: Alain Aspect, John F. Clauser and Anton Zeilinger, 2022
Engineer quantum phenomena to our own ends, quantum engineering:
§ Quantum science allows to understand the elements periodic table quantum engineering allows to 

create a new element with new optical and electrical properties.
§ In our case: quantum computers!

See talk of Makoto Fujiwara 

for quantum applications  
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Superconductors
Superconducting electronic junctions below 15mK behave as 
quantum systems with discrete energy levels
Ex. Google, IBM, Rigetti

Major Quantum computers 

Credit: Google Quantum AI/PA

Trapped ions
Ions can be confined in a free space by using 
electromagnetic traps and manipulated with lasers
Ex. IonQ, Quantinuum

Neutral atoms
Ordered neutral atoms in 2D and 3D arrays 
manipulated with lasers
Ex. Pasqal

Credit: University of Oxford

Credit: Pasqal
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Optics
Linear optics elements use photons as information 
carriers and photon detectors to detect quantum 
information
Ex. Xanadu

Major Quantum computers cont’d 

Credit: Google Quantum AI/PA
Annealing
Quantum processing unit, QPU, built by qubits 
lattice with different topologies.
Hardware relies on metal loops of niobium with 
tiny electrical currents running through them.
Ex. D-Wave

Credit: D-WAVE

Credit: Xanadu

Each computer technology has its own software to use it:  gates based or customizable Hamiltonian 
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Could quantum computing offer a new path for HEP scientific computing?

Advantages: 
- possible quantum speed-up in processing time
- sensitive to quantum correlations 
- increased expressivity*

Do we, HEP community, need to change “computing” paradigm? How 
to proceed?

*ability to generate states representative of the Hilbert space.
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Experimental high energy physic data
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1 Introduction

The defining goal of particle physics is to understand the fundamental nature of elementary
particles and their interactions. The outcome of a particle physics measurement is expressed
in terms of a quantum field theory Lagrangian and its parameters. The great experimental
strength of collider-based particle physics is the availability of a huge amount of data and
measurements in combination with a well-controlled environment. The theoretical and ex-
perimental poles are linked through precision simulations, starting from the Standard Model
or a hypothetical Lagrangian, generating particle-level events, and eventually simulating the
detector. The simulation chain realized by the standard LHC event generators [1–5] and il-
lustrated in Fig. 1, should be based on first-principles physics rather than empiric modeling.
For these simulations precision and speed are essentially two sides of the same medal. Adding
modern machine learning to the numerics toolbox will help provide the simulations needed
for the LHC Run 3 and HL-LHC [6], as well as future energy frontier machines.

From a fundamental physics perspective there exist three distinctly different kinds of mea-
surements at the LHC. First, basic and purely experimental measurements should be as inde-
pendent of theory considerations and first-principle simulations as possible, to avoid expiration
dates. Their problem is that they provide no information about fundamental physics. These
basic measurements benefit from modern machine learning for instance in understanding the
data and calibrating the detectors. A second class of measurements is supplemented with a
fundamental theory interpretation framework. Examples are well-defined inclusive production
rates, like fiducial or total cross sections. They can be compared to predictions from pertur-
bative quantum field theory. When we expect to find agreement with the Standard Model,
modern machine learning can help us in using these measurements to extract parton densities
or improve our Monte Carlo simulations. A third kind of measurement reflects our goal to
further our understanding of fundamental physics by comparing data to predictions from per-
turbative or non-perturbative quantum field theory. We assume that interesting physics signals
hide in specific kinematic regions. Here, we can search for deviations between the Standard
Model predictions and experimental results, measure Standard Model parameters or higher-
dimensional Wilson coefficients, and aim for anomalies and eventually a proper discovery.
Such measurements of all possible features in the vast phase space of LHC collisions require
precision simulations, specifically theory-based event generators. We will show how all of
these aspects benefit significantly from the application of modern machine learning methods.

The challenges for event generators are, first of all, defined by the increase of the LHC
luminosity and the expected advances in experimental precision and reach. Going from the
Run 2 dataset of 139 fb�1 to the projected HL-LHC dataset of 4 ab�1 suggests that experimen-
tal uncertainties at and below the percent level will become standard and need to be matched
by theory predictions, to allow for any kind of precision measurement. The same increase in
rate will allow us to probe more and more exotic kinematic regions, with the hope of finding
hints for new particles and interactions. The higher rates and an improved experimental un-

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse

Figure 1: Illustration of the LHC simulation chain. The forward direction is discussed
in Secs. 2 and 3, while the inverse simulation is the topic of Sec. 4.
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A. Butter et al. 
Snowmass contribution 
https://arxiv.org/abs/2203.07460

HEP experiments use computers in the two directions of the arrows:
❊ predict results from an experiment, for example detector simulation
❊ data analysis for models interpretation or search for anomalies

In both cases, HEP experiments are based on measurements                    HEP data are not quantum data 
need to be transformed to be processed in quantum computers: quantum embedding

What goes in the quantum state depends 
on the goal: track segment, event 
observables, …
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How to use a quantum computer
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System 
preparation: data 

embedding, 
vectors and 
operators 

initialization

Computation: 
operators, that 

implement 
algorithms, 

applied to vectors:

Measurement: 
evaluation of 

probability 
distribution of final 

state

HEP use cases usually require large number of qubits, 𝒪(10!), ⇒ simple or simplified 
applications used
Quantum computers have:
§ not-so-large number of qubits: 30 ÷ 100 now,  100 ÷ 300 near future, ~1000 in few years
§ quantum error* correction not yet at the level to guarantee fault tolerant computing

quantum simulators: classical algorithms to be executed on classical computers emulating quantum computer
If the number of qubits is large quantum computer can not be simulated.

* Quantum errors: quantum noise and states decoherence
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Example 1: Tracks reconstruction
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Track identification is a challenge for high granularity tracking systems, it scale as 𝑁"#$%&÷! 
Quantum methods could provide speed-up 

• Positrons in LUXE experiment @DESY to 
study QED in strong-field regime, 𝜉: laser 
intensity 

• Tracking: 4 layers of detector  
• Positron rate spans 10-4÷106
• Pre-select doublets/triplets
• Quantum methods compared to Combinatorial 

Kalman Fitter

A. Crippa et al, https://arxiv.org/abs/2304.01690

in a perfect (i.e. 100%) segment finding efficiency, with a segment purity of 100% (93%) when
setting the angular parameter to Y = 10�9 (10�5), indicating excellent performance of our new
algorithm under ideal conditions.

Figure 5: Event display of the hits (in red) coming from a collision event in half of the VELO
together with the tracks reconstructed using the classical linear Ising solver presented in this work
(in black).

5.3 Qiskit implementation

To validate the usage of the HHL subroutine, the algorithm has been tested using events generated
with a detector toy model, described in Section 5.1. In order to test the implementation using the
HHL algorithm, a number of particles ranging from 2 to 5 are generated. For each generated event,
the matrix � and the vector 1 of (4.2) are calculated for the list of hits left in the detector modules. The
HHL implementation provided by the Qiskit Aqua Python package [45] has been used to generate
a circuit that solves the system of linear equations. The circuit is then executed on the Qiskit
Aer noise-less simulator and results are retrieved by performing a state-vector analysis of the final
quantum state. As an example, the largest (in terms of the number of doublets) reconstructed event
is shown in Figure 7. Additionally, circuits are transpiled (optimisation level 3) to fit the ibm_hanoi
27-qubit r5.11 Falcon quantum processor. This allows us to get realistic circuit sizes for the current
implementation of the algorithm on present devices. The number of qubits required, the total depth
and number of 2-qubit gates are shown in Table 1, together with the size of the input events. Under
these conditions, the algorithm was able correctly identify all the tracks in each toy event, with
hit-purity 4pure = 100% and hit-efficiency 4eff = 100%. On the downside, the obtained circuit
depths range from a few thousands to several millions suggesting that this implementation is not
yet in a state to be executed on current circuit-based quantum hardware: the Qiskit implementation

– 14 –

D. Nicotra et al 
https://doi.org/10.48550/ar
Xiv.2308.00619

• Simulated 𝐵% → 𝜑𝜑 in LCHb: tracks in vertex 
detector reconstructed with quantum algorithm 
(Harrow-Hassidim-Lloyd) 

• Global approach
• Quantum implementation with toy, because high 

depth circuit required (both with the approximate solution obtained with VQE and the exact solution via matrix
diagonalisation), QGNN-based tracking, and conventional CKF-based tracking.
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Figure 9. Left: Track reconstruction e�ciency as a function of the field intensity parameter
⇠. Right: Track fake rate as a function of ⇠. The results from the exact matrix diagonalisation
are shown as a line to help the comparison between the methods. The empty triangles show
the results of a QGNN training limited to 90 BXs. See Figure 5 (right) for the number of
positrons corresponding to each ⇠. The results based on hybrid quantum-classical methods rely
on classical simulations of quantum devices.

The performance of CKF-based tracking is used as a state-of-the-art benchmark. The
excellent performance of the classical method deteriorates with ⇠, because of the increasing
hit density. The results using the exact matrix diagonalisation to solve the QUBO are well
aligned with the CKF algorithm and achieve a higher e�ciency by 1–2% for large values of
⇠ at the cost of an increase in the fake rate of approximately a factor of two. The rate of
purely combinatorial tracks, i.e. tracks reconstructed from four hits belonging to four distinct
positrons, accounts for about 50% of the total fake rate, independently of the reconstruction
algorithm considered. The results for VQE are in excellent agreement, within the statistical
uncertainties, with those from the matrix diagonalisation.

The results for the QGNN-based tracking are shown up to ⇠ = 4, above which simulating the
quantum circuits becomes computationally prohibitive with the currently available resources.
The reconstruction e�ciency is found to be compatible with the other methods, with a
substantially higher fake rate. Further work aimed at optimising the selection of the EdgeNet
predictions could mitigate this e↵ect. The QGNN results were validated by implementing a
classical GNN [22, 23] with the same architecture, but with 128 node hidden features, finding
excellent agreement. For ⇠ = 3, two values of QGNN e�ciency are shown. The empty triangle
is the result based on 100 BXs, i.e. the same number of BX used to evaluate the performance
of the CKF and QUBO-based methods, using 90% of the data for the training of the model
and 10% for the inference. Because of the modest particle multiplicity expected at ⇠ = 3, the
number of true tracks used in the QGNN training is too small to obtain an optimal result. The
full triangles show the e�ciency obtained with the QGNN training based on data generated
with ⇠ = 4, which corresponds to a substantially larger set of true tracks, restoring a higher
e�ciency.

The dependency of the track reconstruction e�ciency on the GNN-based approaches was
further studied in e

�-laser collisions with ⇠ = 3, comparing the results obtained with the QGNN
and with a classical GNN for di↵erent numbers of true tracks used in the training. The findings

(both with the approximate solution obtained with VQE and the exact solution via matrix
diagonalisation), QGNN-based tracking, and conventional CKF-based tracking.
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Figure 9. Left: Track reconstruction e�ciency as a function of the field intensity parameter
⇠. Right: Track fake rate as a function of ⇠. The results from the exact matrix diagonalisation
are shown as a line to help the comparison between the methods. The empty triangles show
the results of a QGNN training limited to 90 BXs. See Figure 5 (right) for the number of
positrons corresponding to each ⇠. The results based on hybrid quantum-classical methods rely
on classical simulations of quantum devices.

The performance of CKF-based tracking is used as a state-of-the-art benchmark. The
excellent performance of the classical method deteriorates with ⇠, because of the increasing
hit density. The results using the exact matrix diagonalisation to solve the QUBO are well
aligned with the CKF algorithm and achieve a higher e�ciency by 1–2% for large values of
⇠ at the cost of an increase in the fake rate of approximately a factor of two. The rate of
purely combinatorial tracks, i.e. tracks reconstructed from four hits belonging to four distinct
positrons, accounts for about 50% of the total fake rate, independently of the reconstruction
algorithm considered. The results for VQE are in excellent agreement, within the statistical
uncertainties, with those from the matrix diagonalisation.

The results for the QGNN-based tracking are shown up to ⇠ = 4, above which simulating the
quantum circuits becomes computationally prohibitive with the currently available resources.
The reconstruction e�ciency is found to be compatible with the other methods, with a
substantially higher fake rate. Further work aimed at optimising the selection of the EdgeNet
predictions could mitigate this e↵ect. The QGNN results were validated by implementing a
classical GNN [22, 23] with the same architecture, but with 128 node hidden features, finding
excellent agreement. For ⇠ = 3, two values of QGNN e�ciency are shown. The empty triangle
is the result based on 100 BXs, i.e. the same number of BX used to evaluate the performance
of the CKF and QUBO-based methods, using 90% of the data for the training of the model
and 10% for the inference. Because of the modest particle multiplicity expected at ⇠ = 3, the
number of true tracks used in the QGNN training is too small to obtain an optimal result. The
full triangles show the e�ciency obtained with the QGNN training based on data generated
with ⇠ = 4, which corresponds to a substantially larger set of true tracks, restoring a higher
e�ciency.

The dependency of the track reconstruction e�ciency on the GNN-based approaches was
further studied in e

�-laser collisions with ⇠ = 3, comparing the results obtained with the QGNN
and with a classical GNN for di↵erent numbers of true tracks used in the training. The findings

Promise exponential 
advantage

https://arxiv.org/abs/2304.01690
https://doi.org/10.48550/arXiv.2308.00619
https://doi.org/10.48550/arXiv.2308.00619
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Example 2: Jet reconstruction
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J. J. Martinez de Leijarza et al. 
PhysRevD.106.036021

Use generalized kT-algorithm 

2 and 3 are repeated a number T of times, so the final time
complexity of this algorithm is OðN2TdÞ.
Here, a quantum (hybrid) algorithm is presented which

uses the invariant sum squared as a metric in the similarity
matrix and calculates it through a quantum subroutine, as
the K-means algorithm described in the Sec. IVA. Then, a
speedup would be achieved, since computing the distances
only requires Oðlogðd − 1ÞÞ qubits. So, the quantum AP
algorithm, which is as far as we know completely original,
would have a time complexity of OðN2T logðd − 1ÞÞ.

C. Generalized kT-jet algorithm

The inclusive variant of the generalised kT-jet algorithm
is formulated as follows [64]:
(1) For each pair of partons i, j the following distance is

computed:

dij ¼ minðp2p
T;i; p

2p
T;jÞΔR2

ij=R
2; ð19Þ

with ΔR2
ij ¼ ðyi − yjÞ2 þ ðϕi − ϕjÞ2, where pT;i, yi

and ϕi are the transverse momentum (with respect to
the beam direction), rapidity and azimuth of particle
i. R is a jet-radius parameter usually taken of order 1.
For each particle i the beam distance is diB ¼ p2p

T;i.
(2) Find the minimum dmin among all the distances dij,

diB. If dmin is a dij, the particles i and j are merged
into a single particle summing their four-momenta
(this is the E-scheme recombination); if dmin is a diB
then the particle i is declared as a final jet and it is
removed from the list.

(3) Repeat from step 1 until there are no particles left.
It is noticeable that for specific values of p in Eq. (19),

the generalized kT algorithm is reduced to the algorithms:
kT (p ¼ 1), Cambridge/Aachen (p ¼ 0) and anti-kT
(p ¼ −1). As it is claimed in Ref. [88], this classical
version of the kT-jet algorithm is OðN3Þ, since the
bottleneck of the algorithm is scanning the OðN2Þ table
with all the distances dij, diB, and it has to be done N times.
Nevertheless, the FastJet algorithm is able to reduce the
complexity to OðN2Þ. It is achieved by identifying each
particle’s geometrical nearest neighbor, thereby it is not
necessary to construct a size-N2 table of dij, but only the
size-N array, diGi

, where Gi is i’s geometrical nearest
neighbor. Furthermore, this FastJet algorithm can be opti-
mized further using the so-called Voronoi diagrams achiev-
ing a reduction in the time complexity from OðN2Þ
to OðN log NÞ.
Regarding the quantum version of this algorithm, the

distance ΔR2
ij will be computed classically whereas the

minimum will be obtained through a quantum algorithm.
This is due to the fact that the speed up achieved by
obtaining the minimum here with a quantum subroutine
will be dominant. Thereby, what is to be used here is

the new algorithm to obtain the maximum of a list of
values (see Sec. III). So obtaining the minimum among
all the distances dij, diB will turn out to be obtaining
the maximum of its inverses: d−1ij , d−1iB . Actually, these
inverse distances are what will be computed directly for
each pair i, j. Since computing the distances and there-
after computing its inverses would require traversing a
vector of size N, so it would have a complexity OðN2Þ.
With that in mind one may also directly compute d−aij ,
d−aiB , with a ∈ N, to increase the separation among the
data, which makes the maximum more likely when
measuring. And this will not increase the overall time
complexity of the algorithm either. In Sec. V we compare
the results obtained when applying the algorithm with
different a values.
The quantum maximum searching algorithm presented

above could be applied to the kT-jet algorithm success-
fully because accuracy is not critical. Even if our quantum
algorithm fails to obtain the absolute maximum in one of
the multiples iterations, this could end up not affecting the
overall jet clustering process. Since an error in finding the
maximum will provoke a flip in the order in which two
particles merge, and the final result will in many cases be
independent of this permutation.
As a final remark, notice that the kT-jet quantum

algorithm would be OðN2 logðNÞÞ, since computing all
the distances takes OðN2Þ and finding the minimum
would be OðlogðNÞÞ, in comparison with the OðN3Þ that
requires its classical analog [88]. Furthermore, the quan-
tum minimum searching could also be implemented in
the FastJet algorithm of complexity OðN2Þ. In this case,
the resulting quantum algorithm would be OðN logðNÞÞ,
which is of the same order as the FastJet algorithm version
with Voronoi diagrams, which is the most efficient
clustering algorithm known to date. This quantum
FastJet algorithm has been tested in Sec. IV C with
LHC physical datasets.

V. QUANTUM SIMULATIONS

The implementation of the quantum algorithms has
been performed through the open-source IBMQ software.
In particular, the Python module Qiskit developed by
IBMQ has been used to build the quantum circuit to
calculate the invariant sum squared as described in
Sec. II B for the K-means and the AP algorithm, as
well as to build the quantum circuit for finding the
minimum distance in the K-means and the kT-jet
algorithm. Afterward, these quantum subroutines have
been introduced into their respective classical algorithm
substituting the classical part they are speeding up. The
Qiskit module serves for executing circuits on real
quantum devices. Nevertheless, in previous studies such
as [66,89], it has been found that the experimental error
associated with the quantum devices provided by IBMQ

QUANTUM CLUSTERING AND JET RECONSTRUCTION AT THE … PHYS. REV. D 106, 036021 (2022)

036021-7

p =-1 -> anti-kT
p =-0 -> Achen/Cambridge
p =1 -> kT

(a) Classical anti-kT , p = �1, R = 1. (b) Quantum anti-kT , p = �1, R = 1, ✏c = 0.99.

(c) Classical kT , p = 1, R = 1. (d) Quantum kT , p = 1, R = 1, ✏c = 0.98.

(e) Classical Cam/Aachen, p = 0, R = 1. (f) Quantum Cam/Aachen, p = 0, R = 1, ✏c = 0.98.

Figure 7: A sample parton-level event generated as described in the text and clustered with three
di↵erent kT -jets algorithms as well as its quantum versions.

16

(a) Classical anti-kT , p = �1, R = 1. (b) Quantum anti-kT , p = �1, R = 1, ✏c = 0.99.

(c) Classical kT , p = 1, R = 1. (d) Quantum kT , p = 1, R = 1, ✏c = 0.98.

(e) Classical Cam/Aachen, p = 0, R = 1. (f) Quantum Cam/Aachen, p = 0, R = 1, ✏c = 0.98.

Figure 7: A sample parton-level event generated as described in the text and clustered with three
di↵erent kT -jets algorithms as well as its quantum versions.
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anti-kT  R=1 quantum anti-kT  R=1, 𝜀! = 0.99 

§ Δ𝑅#,)& 	: computed classically
§ Minimum of the distance computed with quantum 

algorithm
§ Due to the limitation of the noise on quantum 

computer results are obtained in an error-free 
quantum simulator.

Data set: 300 three-dimensional vectors (massless 
partons) recoiling against small number of tagged 
particles. 

https://doi.org/10.1103/PhysRevD.106.036021
https://doi.org/10.1103/PhysRevD.106.036021
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Example 3: Jet identification
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Jet tagging: identification of the flavor of the quark (b, c, light) that generate the jet 

SV

PV

Algorithms based on machine learning (ML) developed and tuned in 
the years: high efficiency and high purity is reached. See talk of Lukas 
Heinrich
Quantum machine learning algorithm developed @LHCb
❃ Use reduced number of features to keep low number of qubit
❃ Run on noiseless simulator and tested on real hardware
❃ Quantum noise evaluated not impacting with a low number of qubits
❃ Performance similar to ML

Findings:
ü Amount of data needed for training is much less in QML
ü Results depends on the implementation of the algorithm on 

quantum computer ⇒ co-design mandatory
ü Quantum correlations among features could give insight on jet 

structure

A. Gianelle et al.,  J. High 
Energ. Phys. 2022, 14 (2022)

https://doi.org/10.1007/JHEP08(2022)014
https://doi.org/10.1007/JHEP08(2022)014
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Example 4: Detector simulation
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Credits: BYOPD by 
Sascha Mehlhase

LHC micro model 
with Lego

Detector simulation at LHC, HL-LHC 
experiments use about 50% of CPU
Future accelerator detectors will need 
more due to increased granularity and 
precision required.
See Borut Kersevan, 
Graeme Stewart talks

3

Application of GAN in HEP 
3DGAN 

▪ HEP detectors described as 3D cameras, recording pictures of particle collisions
▪ Calorimeter – measure the energies deposited by the particle
→  3D image with monochromatic pixel intensities
▪ Higher Luminosity LHC → higher statistics & smaller simulation errors 
▪ Speed up simulations → GAN (e.g. CaloGAN, 3DGAN)  

Real (Geant4)

https://doi.org/10.1088%2F1742-6596%2F1085%2F2%2F022005

Generated (3DGAN)

Vallecorsa, S. et al. Generative Adversarial Networks for Fast Simulation (2018) 

Dual-PQC GAN Model in High Energy Physics

Use of quantum GAN (qGAN)
§ Models applied with success on quantum finance

qGAN in HEP
§ Difficult to reproduce energy probability distribution over pixel, 

lot of information -> dedicated approach (dual-parametrized 
quantum circuit)

§ Simulate calorimeter longitudinal energy distribution only along 
calorimetry depth for 4 pixels to reduce number of qubits

§ Encouraging results, room for improvement

§ Test different circuit approach to simulated calorimeter test 
beam prototypes

Generative Adversarial Network (GAN) models are successful 

S. Chang, EPJ Web Conf. 

Volume 251 (CHEP 2021) 

https://sascha.mehlhase.info/
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Moving toward an organized effort
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§ Working group in Snowmass CompF6: Quantum computing and session in Seattle
§ Snowmass Computational Frontier: Topical Group Report on Quantum Computing 

https://doi.org/10.48550/arXiv.2209.06786
§ Initiative promoted by CERN, DESY and IBM:  working group on Quantum Computing for HEP formed 

Nov. 2022, QC4HEP, participation from several HEP Institutes (EU, US, Japan + other countries) 

Paper published on arxiv  https://doi.org/10.48550/arXiv.2307.03236
Joint effort across HEP community, 
experiment and theory

https://doi.org/10.48550/arXiv.2307.03236
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Sub-groups of QC4HEP and activities 
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Theory Experiments

https://doi.org/10.48550/arXiv.2307.03236

https://doi.org/10.48550/arXiv.2307.03236
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Within the CERN QTI phase 2:
• Collaborate in each sub-WG and across them to make progress 
• Establish synergies and collaboration across WGs
• Participate to the IBM 100x100 challenge:

14

100
x 100

100x100 challenge

We want to build a tool, 
which beginning in 2024, 
is capable of estimating 
noise-free observables of 
circuits consisting of 100 
qubits and depth 100 
within a day.

challenge
IBM Quantum © 2023 IBM Corporation

Some use cases will be selected to develop
the methods and algorithms on the IBM 
devices to assess:
- actual capabilities of the devices, 
- scalability, performance and results of the 
approaches

CERN is a Hub Member of the IBM Q-Network
Access to IBM hardware based on quotas for Hub members

V. Radescu
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Outlook
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Quantum Computers are available exploiting different technologies, companies and large labs cooperate 
to provide hardware with more qubits, more depth, more stable and less noise.

HEP community is just starting to play with this new toy, limitations due:
§ low number of qubits and small depth
§ noise
§ data embedding

Nevertheless, results are encouraging and somehow intriguing:
• speed-up is promised
• new insight on physics processes may be possible by study 
     quantum correlations

New computing paradigm is needed in HEP 
to exploit the new hardware
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BACKUP SLIDES
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Example : Anomaly detection

BSM process treated as anomalies:
• Randall-Sundrum gravitons decaying to two W-bosons (wide and narrow).
• Scalar boson A decaying to a HZ bosons (A → HZ),  H → ZZ, resulting in a ZZZ final state. 
• Resonances 1500-4500 GeV in steps 1000 GeV
Data: pp →jets using QCD

New method, convolutional autoencoder (AE) developed to reduce the dimension of the problem
QML methods developed to detect anomalies: kernel machines and clustering algorithms. 
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TABLE I. Background rejections. Comparing the background
rejection "�1

b ("s) of the unsupervised quantum and classical
kernel machines, for signal e�ciencies "s = 0.6, 0.8. In Table
(a) the background rejection is computed for a fixed latent
dimension of 8 and the number of training samples is varied.
In Table (b) the background rejection is calculated for a fixed
training size of 600 and the dimensionality of the latent space is
varied. Values are obtained using 5-fold testing of Ntest = 105.

FIG. 4. Relating the performance of the unsupervised quantum
kernel machine to properties of the quantum circuit. The plot
of the ratio �QC, defined in Eq. 5, as a function of parameters
of the data embedding quantum circuit presented in Fig. 2a.
L denotes the number of repetitions of the ansatz, NE0 and
NE1 represent cases where no entanglement is present in the
circuit, and FE refers to all-to-all entanglement. For the case
of three repetitions, �QC is also presented as a function of the
number of qubits nq.

The results are presented in Table II. We use the AUC
to summarise the performance of the models, given the
limited number of testing samples. The AUC is less prone
to statistical fluctuation being the integral of the ROC
curve, compared to the background rejection "�1

b , which
corresponds to a point on the ROC curve. Consequently,

we note that the values obtained on hardware, due to
low testing statistics, are less accurate and should not be
compared to the ones obtained by the more statistically
robust computation using 105 testing samples (cf. Fig. 3).
Additionally, the mean purity of the states htr⇢2i ⌘

hk(xi, xi)i, over the data points xi, is measured on the
quantum computer to ensure that throughout the compu-
tation the state has not decohered, i.e., lost its quantum
nature due to noise and decoherence of the qubits. A fully
mixed (decohered) state yields a purity of 1/2nq , where
nq is the number of qubits, resulting in approximately
0.39⇥ 10�2 for eight qubits. The hardware performance
and the corresponding purities confirm that the designed
quantum circuit for kernel-based anomaly detection, at
least up to three repetitions, is indeed suitable for current
quantum computers.

Kernel Machine Run AUC htr⇢2i
Hardware L = 1 0.844 0.271(6)
Ideal L = 1 0.999 1

Hardware L = 3 0.997 0.15(2)
Ideal L = 3 1.0 1

Classical 0.998 -

TABLE II. Quantum hardware results. Comparing the perfor-
mance of the unsupervised kernel machine in hardware and
ideal simulation in terms of AUC, for one (L = 1) and three
(L = 3) repetitions of the data encoding circuit. The mean
purity htr⇢2i is presented with its uncertainty in parenthesis
at the corresponding decimal point.

V. CONCLUSIONS

We presented a realistic study of QML models for
anomaly detection in proton collisions at the LHC. The
ability of the designed models to identify new-physics
(BSM) events was thoroughly investigated using metrics
of interest in HEP analyses. The proposed combination of
an autoencoder that compresses raw HEP jet features to
a tractable size, with quantum anomaly detection models
proved to be a viable strategy for data-driven searches
for new physics at the LHC.

In studies addressing classification tasks in HEP [20–26],
so far, no significant di↵erence in performance between
quantum and classical ML models has been observed. In
this work, to the best of our knowledge, we presented a
first instance of the consistent performance advantage of
QML models over classical models of similar complexity
for an anomaly detection task in fundamental physics.
This result, for the unsupervised quantum kernel ma-
chine, is statistically significant, is achieved using realistic
datasets, and stretches beyond one-shot experiments or
specific values of the considered parameter space. We
demonstrated the role of intrinsically quantum properties
of the developed data encoding circuit to achieve perfor-
mance advantage and showed that the quantum model

Results

L: repetition of the encoding
AUC: Area under the curve
⟨trρ2⟩: mean purity of the states 
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Example : Event generation

Event generation, even if great interest for experimental physicists, is an effort driven by theorist 
physicist:
Ø Conditional Born machine for Monte Carlo event generation, O. Kiss et al., Physical Review A 106, 

022612 (2022)
Ø Style-based quantum generative adversarial networks for Monte Carlo events, C. Bravo-Prieto et 

al., Quantum 6, 777 (2022)


