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High Field Magnets

* High Field Magnets are among the key technologies that will enable search
for new physics at the energy frontier

 Future circular machines (FCC h-h, SppC) require a new magnet
technology able to achieve fields beyond the reach of Nb-Ti and beyond
the fields produced via Nb,Sn in HL-LHC (~ 12 T)

* The path toward the next generation of magnets for future colliders is
complex and requires:

R&D on new concepts (superconductors, magnets and associated technology);
Validation of concepts in short models;

Production of medium-size robust magnets;

Industrialization of cost-effective design;

Collaboration among laboratories, university and industry: a wide range of expertise
is required

LTS and HTS do not have today the same level of maturity



Superconductivity for Accelerators

Superconducting magnets first suggested by =

mid-60s t
1968: Brookhaven Summer Study o SUROUCTNG DRV A AR
* Most influential event where all important - e
topics related to Nb-Ti magnets were L
discussed — including flux jumps and t
stability in superconductors L "D ,,;
*1971: “compacted fully transformed cable” t Yoz
produced at Rutherford Lab: the Rutherford -
cable t
* Technological progress slow and steady in the ©
last half century. Mainly Nb-Ti, despite early t
magnet pioneers on Nb;Sn | L
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Superconductivity for Accelerators

High Field Nb,;Sn
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Cryostatic Stability Concept
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Superconductivity for Accelerators

The quest for higher energies
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Year of commissioning

2020 Jc(1.9 K, 9 T)~2300 A/mm?
~ 1265 tons of Nb-Ti cables

State-of-the-art Nb-Ti magnets: coordinated effort during about 30 years



Beyond ~ 10 T: Nb;Sn Technology

Iron pad
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Bladder and keys technology. Design developed by the USA-LARP
program — initiated in 2003

Installation in the LHC underground and commissiofihg: 2026 - 2028
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State of the Art: Nb,Sn for HL-LHC

RRP 108/127

A 4

Lay- | Sub-El. Jc (12 7T), Jc (15 T), Bcz, Jc (16 T), J’c (18 T),
out size o o o o o
[um] |[A/mm’]|[A/mm?]| [T] |[A/mm’]|[A/mm’]
2637, 1371, | 24.2, 1064, 581,
RRP 0.7 mm o8 46 32 74 0.5 70 61
RRP 0.85 mm / 2797, 1573, | 25.9, 1266, 769,
(75 hrs @ 665 °C) 127 - 53 43 0.3 41 36
RRP 0.85 mm 2725, 1498, | 25.4, 1194, 704,
(50 hrs @ 665 °C) 61 47 0.3 44 38
PIT 0.85 mm 192 39 2267, 1317, | 26.9, 1075, 681,
Bundle Barrier 46 28 0.3 25 19

Total procurement for HL-LHC ~ 30 tons
Jc(12 T, 4.2 K) > 2450 A/mm?

MQXF Cable, 40 Nb,Sn wires (® = 0.85 mm)

Q S W\w / ‘t\

Cabling at CERN and at LBNL (via AUP:
the Fermilab-headquartered USA

realzrinocontribution to HL-LHC)



State of the Art: Nb,Sn for HL-LHC

* Wind & React technology: winding of un-reacted cables and final heat
treatment of coils

* Long reaction heat treatment (~ 7 days, with last plateau at 665°C for 50 h) of
coils

e Coils assembled in the final mechanical structure after reaction and
Impregnation

* Brittle material, with strain dependent electrical performance
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Challenges — Nb,Sn : Mechanical

Weld of stainless steel shell

* Challenges and performance limitations
of HL-LHC prototype magnets identified to
be of mechanical nature (excessive stress
on conductor) during:

* Cold mass assembly (non optimum coupling
between welded outer stainless steel and
magnet stricture — aluminum rings)

* Magnet pre-loading (unbalanced and/or local
excessive pre-stress) Vertical displacement of the coil

* Coil manufacturing (deformation during after heat treatment
handling and/or manufacturing, including heat — .
treatment))
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Challenges — Nb,Sn : Mechanical

Problems identified via post-mortem analysis on HL-LHC Nb,Sn coils
Filament cracks in VIOXF Coil

o Performance degradation of coils has been -
identified to be due to defects of mechanical LY R
origin T

o Excessive transverse stress applied during

loading at room temperature is one of the
possible causes of mechanical degradation
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Successful MQXFB03 Qualification

MQXFBO03 quench history at 20 A/s
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R&D on Nb,Sn for Future Accelerators

* Jc of Nb;Sn wire

* Deff of Nb;Sn wire

e Stability

* Stress management of Nb,Sn coils

A.Ballarino



Target for Jc of Nb,Sn Wire—16T

FCC Jc target vs HL-LHC performance
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Needed: 7000 tons - 9000 tons superconductors

A.Ballarino



Jc on R&D Nb,Sn wire

Internal Oxidation Process  Internal Oxidation Process Alloying Nb-Ta with Hf at ASC
at Fermilab at Unige

Nb-1wt%Zr -7.5 wt% Ta

7 T T T T T T T T
mo ————————— 160 ———————————Wire Samples - NbTa2Hf  550°c/100n+720°C/100h ]
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G. Bovone et al. S. Balachandran et al.

X. Xu et al, arXiv:1903.08121, 2019 : .
Supercond. Sci. Technol. 36 (2023) 095018  Supercond. Sci. Technol. 32 (2019) 044006

Achieved > 1500 A/mm?at 12T
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Voltage (V)

P3P2-P4P1 [V]

Challenges — Nb,Sn : Flux Jumps
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MQXF Prototype - Quench detection settings

Main quench detection thresholds Low threshold Short validation time
) A8 400 mV, 200 ms 1000 mV, 70 ms

NGRS RN 300 mV, 50 ms 400 mV, 30 ms

8 KA <1< 12 kA [ 00N\ YN0 1S 150 mV, 8 ms
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Challenges — Nb,Sn : Field Quality

10

Sextupole field errors (b3) in
dipole magnets induced by
persistent currents: 11 T Nb,Sn vs
LHC Nb-Ti Main Dipole
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11 T Dipole aperture = 60 mm
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20H )1 —— 11T dipole (Nb,,Sn)

LHC main dipole (Nb-Ti)
= = =LHC injection level

Sextupolar component (units of 10'4)

1
25 F
1

o Full penetration of Nb,Sn after injection:
peak of field distortion during the acceleration ramp
o During the ramp, variation for Nb,Sn three times larger than for Nb-Ti
o Systematic effect that in principle can be taken into account and corrected
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R&D on Nb,Sn Magnets
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Measurements at UNIGE, Geneva
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R&D on Nb,;Sn Magnets

INFN Ciemat

Block-Coil Cos-theta Common Coil Canted

FCC Dipole conceptual designs - EuroCircol

Bbore=16T
Bpeak =18.6T
Jc=1500 A/mm2at 16T
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R&D on Nb,Sn Magnets
Stress management Double aperture Demonstrators

Stress management concepts 12 T Collared vs Bladder & Key Racetrack Magnet Model (RMM)
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HTS and its Potenti

als
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HTS and its Potentials
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The Present HTS Landscape
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REBCO Tape

High current capability
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Plots based on data presented by tape manufacturers at the HiTAT Workshop, CERN, March 2023
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LDG Report: HTS beyond the range of Nb,Sn

SPS fixed target
Other fixed target; FAIR (hep) ALICE 3 FCC-hh
Belle Il LHCb (= L54) FCC-eh

ALICE LS3 EIC FCC-ee Muon Collider

PIP-I/DUNE/Hyper-K LHeC ILC CcLIC Plasma Collider
< 2030 2030-2035 2035-2040 2040-2045 > 2045

v"’l'::‘: R A
European Strategy, AN
Update .
Laboratory Directors Group

1 LDG Roadmap: “demonstrate the suitability of High-temperature superconductor
(HTS) for accelerator magnet applications, providing a proof-of-principle of HTS
magnet technology beyond the range of Nb,Sn, with a target in excess of 20 T”

J LDG timeline driven by technical readiness

A.Ballarino



Advantages of HTS

* Very high in-field current density at low temperature
* Enabling technology for magnets with fields>16 T

 No magneto thermal-thermal instability, e.g. no flux jump (an issue to be treated
for future high-field Nb,Sn accelerator magnets);

* Higher temperature margin, e.g. capability of tolerating a rise of temperature
due, for instance, to decay particles

* Operation at higher temperature

* Low(er) field magnets operated at temperatures higher than liquid helium (dry-
cooling, He gas cooling, LH,, LN,): operational energy saving

* High specific heat, i.e. high thermal stability (MQE) — the issue comes once the
qguench has generated (detection and protection)

* Higher temperature margin to the benefit of an easier cryogenic control

A.Ballarino



Higgs Factories

Energy Frontier

HTS and its Potentials

Dipoles | Quadrupoles | Undulators/Wigglers | Detectors Field (T)

FCCee | | WRQuad | | < <3T |
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Muon HTS Enabling Technology .
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HTS for Sustainability: operation at higher temperatures (> LHe)

to minimize power consumption
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The HFM Program

* The 2020 update of the European Strategy for Particle Physics
(CERN/3493/C/Rev) has identified a clear and immediate need for a
reinforced R&D on advanced accelerator technologies, and in particular
high-field superconducting magnets, including high-temperature
superconductors

* The High Field Magnets R&D (HFM) Programme is the response that CERN
has initiated, in collaboration with National Laboratories from the
Member States and Associate Member States and linking possibly beyond
to ongoing worldwide efforts, particularly in the US and Japan.

* The HFM Programme — broad goals are:

* Explore the performance limits of LTS accelerator magnets with a focus on robust
large-scale implementation

. axbp;gre the HTS magnet technologies for accelerator application beyond the limits of
n

* Develop the next generation of accelerator magnets for future colliders



The HFM Program
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Conclusions
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