Research on High Field Magnets

A. Ballarino, CERN

ICFA Seminar, DESY, 30/11/2023

Outline

- Status of Nb₃Sn and HTS technology for high field magnets
- Lessons learnt from HL-LHC
- Key developments for future accelerators
- The HFM Program
- Roadmap and timeline
- Potential impact on society
- Conclusions

High Field Magnets

- High Field Magnets are among the key technologies that will enable search for new physics at the energy frontier
- Future circular machines (FCC h-h, SppC) require a new magnet technology able to achieve fields beyond the reach of Nb-Ti and beyond the fields produced via Nb₃Sn in HL-LHC (~ 12 T)
- The **path toward the next generation of magnets** for future colliders is complex and requires:
 - **R&D** on new concepts (superconductors, magnets and associated technology);
 - Validation of concepts in **short models**;
 - Production of **medium-size** robust magnets;
 - Industrialization of cost-effective design;
 - Collaboration among laboratories, university and industry: a wide range of expertise is required
 - LTS and HTS do not have today the same level of maturity

Superconductivity for Accelerators

- Superconducting magnets first suggested by mid-60s
- 1968: Brookhaven Summer Study
 - Most influential event where all important topics related to Nb-Ti magnets were discussed – including flux jumps and stability in superconductors
- **1971**: "compacted fully transformed cable" produced at Rutherford Lab: the Rutherford cable
- Technological progress slow and steady in the last half century. Mainly Nb-Ti, despite early magnet pioneers on Nb₃Sn

Superconductivity for Accelerators

Event	Year	Who and Where
High Field Nb ₃ Sn	1961	Bell Telephone Labs
ANL 25 cm BC Magnet	1965	Argonne National Lab
Cryostatic Stability Concept	1965	Avco Everett Research Lab
12 inch MHD Dipole Magnet	1966	Avco Everett Research Lab
Intrinsic Stability Concept	1968	RAL, AVCO
12 ft & 7 ft H ₂ Bubble Chambers	1968	Argonne & Brookhaven
High Quality M.F. NbTi	1970-80	Industry
Hollow Conductor	1972	CERN
Ramped Magnet Development	1972 to present	Tevatron, HERA, RHIC, SSC, LHC
M.F. Nb ₃ Sn	1976 to present	Industry
MRI	1982	Industry
ENERGY		B. Strauss

A.Ballarino

Superconductivity for Accelerators

~ 1265 tons of Nb-Ti cables

State-of-the-art Nb-Ti magnets: coordinated effort during about 30 years

Bladder and keys technology. Design developed by the USA-LARP program – initiated in 2003

Installation in the LHC underground and commissioning: 2026 - 2028

State of the Art: Nb₃Sn for HL-LHC

MQXF Cable, 40 Nb₃Sn wires (Φ = 0.85 mm)

width = 18.15 mm, mid-thickness = 1.525 mm

	Lay-	Sub-El.	J (12 T),	J (15 T),	B.,	J (16 T),	J (18 T),
	out	size	σ	σ	σ	σ	σ
		[µm]	[A/mm ²]	[A/mm ²]	[T]	[A/mm ²]	[A/mm ²]
	108	46	2637,	1371,	24.2,	1064,	581 ,
KKP U.7 MM			82	74	0.5	70	61
RRP 0.85 mm	/		2797,	1573,	25.9 ,	1266 ,	769 ,
(75 hrs @ 665 °C)	, 127	55	53	43	0.3	41	36
RRP 0.85 mm			2725,	1498,	25.4 ,	1194 ,	704,
(50 hrs @ 665 °C)			61	47	0.3	44	38
PIT 0.85 mm	102	20	2267,	1317,	26.9 ,	1075,	681 ,
Bundle Barrier	192	39	46	28	0.3	25	19

Total procurement for HL-LHC \sim **30 tons** Jc(12 T, 4.2 K) > 2450 A/mm² Cabling at CERN and at LBNL (via AUP: the Fermilab-headquartered USA A.Ballarino contribution to HL-LHC)

State of the Art: Nb₃Sn for HL-LHC

- Wind & React technology: winding of un-reacted cables and final heat treatment of coils
- Long reaction heat treatment (~ 7 days, with last plateau at 665°C for 50 h) of coils
- Coils assembled in the final mechanical structure after reaction and impregnation
- Brittle material, with strain dependent electrical performance

Challenges – Nb₃Sn : Mechanical

- Challenges and performance limitations of HL-LHC prototype magnets identified to be of mechanical nature (excessive stress on conductor) during:
 - Cold mass assembly (non optimum coupling between welded outer stainless steel and magnet stricture – aluminum rings)
 - Magnet pre-loading (unbalanced and/or local excessive pre-stress)
 - Coil manufacturing (deformation during handling and/or manufacturing, including heat treatment))

Weld of stainless steel shell

Vertical displacement of the coil after heat treatment

Challenges – Nb₃Sn : Mechanical

Problems identified via post-mortem analysis on HL-LHC Nb₃Sn coils

- Performance degradation of coils has been identified to be due to defects of mechanical origin
- Excessive transverse stress applied during loading at room temperature is one of the possible causes of mechanical degradation

Filament cracks in MQXF Coil

S. Sgobba el al, CERN

Successful MQXFB03 Qualification

R&D on Nb₃Sn for Future Accelerators

- Jc of Nb₃Sn wire
- Deff of Nb₃Sn wire
- Stability
- Stress management of Nb₃Sn coils

Target for Jc of Nb₃Sn Wire – 16 T

FCC Jc target vs HL-LHC performance

Needed: 7000 tons - 9000 tons superconductors

Jc on R&D Nb₃Sn wire

Internal Oxidation Process at Fermilab

Internal Oxidation Process

Alloying Nb-Ta with Hf at ASC

X. Xu et al, arXiv:1903.08121, 2019

G. Bovone *et al. Supercond. Sci. Technol.* 36 (2023) 095018 S. Balachandran *et al. Supercond. Sci. Technol.* 32 (2019) 044006

Achieved > 1500 A/mm² at 12 T

A.Ballarino

Challenges – Nb₃Sn : Flux Jumps

MQXF Prototype - Quench detection settings

Low threshold	Short validation time
400 mV, 200 ms	1000 mV, 70 ms
300 mV, 50 ms	400 mV, 30 ms
100 mV, 14 ms	150 mV, 8 ms
100 mV, 5 ms	150 mV, 3 ms
	400 mV, 200 ms 300 mV, 50 ms 100 mV, 14 ms 100 mV, 5 ms

Challenges – Nb₃Sn : Field Quality

Sextupole field errors (b3) in dipole magnets induced by persistent currents: 11 T Nb₃Sn vs LHC Nb-Ti Main Dipole

LHC Main Dipole aperture = 56 mm Nb-Ti filaments ~ 5 μ m 11 T Dipole aperture = 60 mm Nb₃Sn sub-elements ~ 40 μ m

- Full penetration of Nb₃Sn after injection:
 peak of field distortion during the acceleration ramp
- \circ During the ramp, variation for Nb₃Sn three times larger than for Nb-Ti
- Systematic effect that in principle can be taken into account and corrected

R&D on Nb₃Sn Magnets

Measurements at UNIGE, Geneva

Supercond. Sci. Technol. 34 (2021) 035008

R&D on Nb₃Sn Magnets

FCC Dipole conceptual designs - EuroCircol

Bbore = 16 T

Bpeak = 18.6 T

Jc = 1500 A/mm² at 16 T

A.Ballarino

R&D on Nb₃Sn Magnets Stress management Double aperture D

Demonstrators

Stress management concepts

Fermilab

12 T Collared vs Bladder & Key CERN

Racetrack Magnet Model (RMM) CERN

98.5 mm 45 turns 45 turns 45 turns 45 turns 42 turns 42 turns

16.5 T in the closed bore

HTS and its Potentials

		Dipoles	Quadrupoles	Undulators/Wigglers	Detectors	Field (T)
ies	FCC-ee		IR Quad		×	< 3 T
ctor	CEPC		IR Quad		×	< 5 T
ss Fa	ILC	×	×	×	×	< 2 T
er Higg	CLIC			×	×	< 2.5 T
	FCC-pp	×	×			16 T -20 T
onti	SppC	×	×			12 T- 24 T
Energy Fr	Muon Colliders	×	×			Solenoids > 10 T-20 T

HTS and its Potentials

	Dipoles	Quadrupoles	Undulators/Wigglers	Detectors	Field (T)
FCC-ee		IR Quad		×	< 3 T
CEPC		IR Quad		×	< 5 T
ILC	×	×	×	×	< 2 T
CLIC			×	×	< 2.5 T
FCC-pp	×	×			16 T -20 T
SppC	×	×			12 T- 24 T
Muon Colliders	×	HTS E	nabling Techno	ology	Solenoids > 10 T-20 T

The Present HTS Landscape

B.Ballarino

Plots based on data presented by tape manufacturers at the HiTAT Workshop, CERN, March 2023

LDG Report: HTS beyond the range of Nb₃Sn

□ LDG Roadmap: "demonstrate the suitability of High-temperature superconductor (HTS) for accelerator magnet applications, providing a proof-of-principle of HTS magnet technology beyond the range of Nb₃Sn, with a target in excess of 20 T"

LDG timeline driven by technical readiness

Advantages of HTS

• Very high in-field current density at low temperature

- Enabling technology for magnets with fields > 16 T
- No magneto thermal-thermal instability, e.g. no flux jump (an issue to be treated for future high-field Nb₃Sn accelerator magnets);
- **Higher temperature margin,** e.g. capability of tolerating a rise of temperature due, for instance, to decay particles

Operation at higher temperature

- Low(er) field magnets operated at temperatures higher than liquid helium (drycooling, He gas cooling, LH₂, LN₂): operational energy saving
- High specific heat, i.e. high thermal stability (MQE) the issue comes once the quench has generated (detection and protection)
- Higher temperature margin to the benefit of an easier cryogenic control

HTS and its Potentials

		Dipoles	Quadrupoles	Undulators/Wigglers	Detectors	Field (T)
ctories	FCC-ee		IR Quad		×	< 3 T
	CEPC		IR Quad		×	< 5 T
ss Fa	ILC	×	×Ben	eticiai jechnolo	pgy _×	< 2 T
Higg	CLIC			×	×	< 2.5 T
er	FCC-pp	×	×		×	16 T -20 T
onti	SppC	×	×		×	12 T- 24 T
Energy Fro	Muon Colliders	×	HTS E	nabling Techno	ology ×	Solenoids > 10 T-20 T

HTS for Sustainability: operation at higher temperatures (> LHe) to minimize power consumption

A.Ballarino

The HFM Program

- The 2020 update of the European Strategy for Particle Physics (CERN/3493/C/Rev) has identified a clear and immediate need for a reinforced R&D on advanced accelerator technologies, and in particular high-field superconducting magnets, including high-temperature superconductors
- The High Field Magnets R&D (HFM) Programme is the response that CERN has initiated, in collaboration with National Laboratories from the Member States and Associate Member States and linking possibly beyond to ongoing worldwide efforts, particularly in the US and Japan.
- The HFM Programme broad goals are:
 - Explore the performance limits of LTS accelerator magnets with a focus on robust large-scale implementation
 - Explore the HTS magnet technologies for accelerator application beyond the limits of Nb3Sn
 - Develop the next generation of accelerator magnets for future colliders

The HFM Program

Conclusions