# Regional Perspectives:

# **Europe**



Karl Jakobs, ECFA Chair University of Freiburg / Germany

## 2020 Update of the European Strategy for Particle Physics

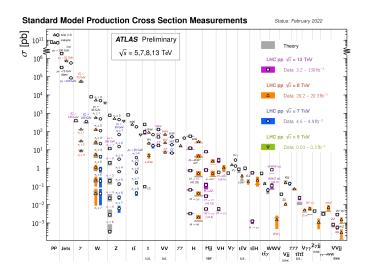
The 2020 update of the **European Strategy for Particle Physics (ESPP)** has defined the major priorities

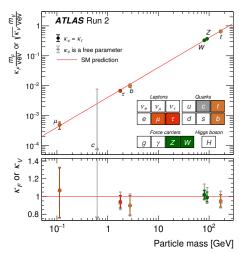
- (i) Full exploitation of the LHC and the High-Luminosity LHC
- (ii) An electron-positron Higgs factory is the highest-priority next collider

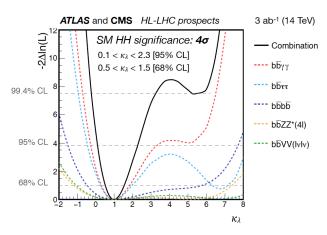


(iii) Longer term: the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy

In addition: A diverse programme that is complementary to the energy frontier is an essential part of the European particle physics strategy (Dark Matter, exploration of flavour and fundamental symmetries) 


→ CERN "Physics Beyond Colliders" programme, complemented by other European Laboratories

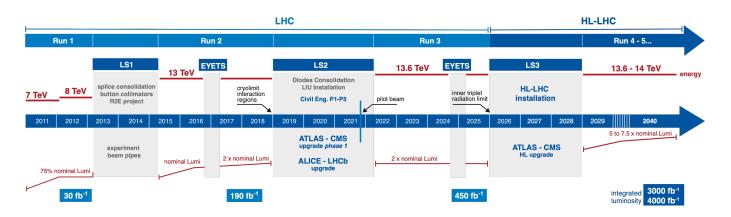

- (iv) Ramp up of R&D effort focused on advanced accelerator technologies, in particular for high-field superconducting magnets, including high-temperature superconductors
   → Organised by the Lab Directors Group, an Accelerator R&D roadmap should be developed
- (v) Maintain a strong focus on instrumentation
   → Organised by ECFA, a Detector R&D Roadmap should be developed




## 1. LHC and Upgrades for HL-LHC

- Excellent LHC operation and physics results from Run 1 and Run 2
- Run 3 (2022 2025) has started well (outstanding perf until mid July 2023, e.g. 1.2 fb<sup>-1</sup> in 24 h),
   however, short pp run in 2023 (32 fb<sup>-1</sup>) due to incidents: (power glitch → magnet quench and leaking bellow between cold mass and insulation vacuum)
  - Despite this: good prospects for Run 3 (2024 2025)
- HL-LHC: First glimpse at Higgs-boson self coupling expected








First sensitivity on the Higgs boson self coupling (±50% uncertainty)

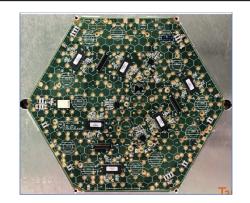


## Status of HL-LHC preparation



- Excellent progress on the machine side, on track for start of operation in 2029 (75% of resources committed)
- Excellent progress on all key technologies;
- Encouraging news from both the US and CERN Nb<sub>3</sub>Sn magnet programmes
   (on track for series production of Nb<sub>3</sub>Sn HL-LHC inner triplet quadrupole magnets)







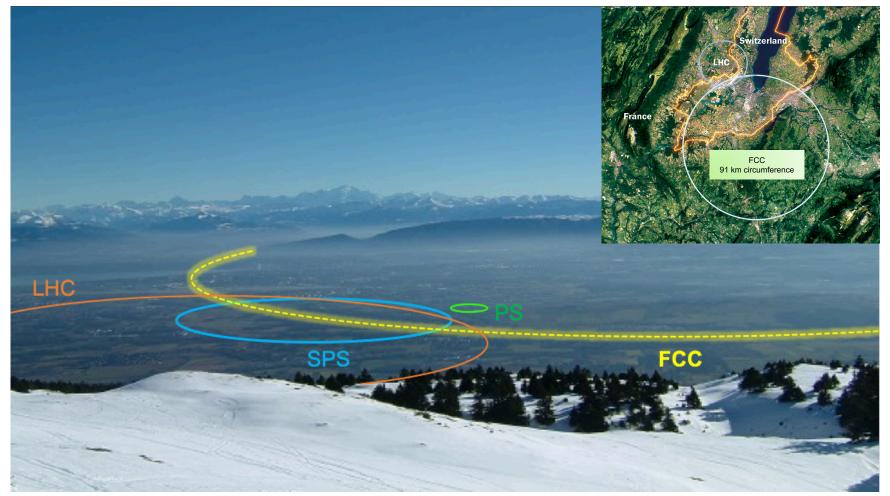

# Status of Phase-II detector upgrades (ATLAS and CMS)



First fully functioning petal of the ATLAS ITk endcap







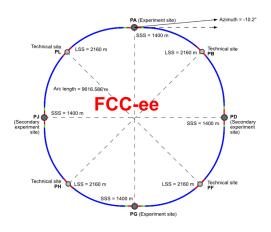


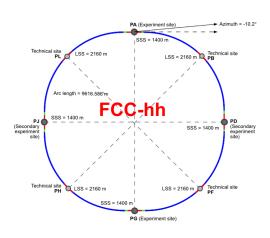

First ladder fully equipped with 12 functional modules

- Projects are making very good progress (in transition to (pre)production)
- However, the schedule for both experiments remains tight
- Challenges also remain due to the worldwide political and economical situation

# 2. FCC: Future Circular Collider




## FCC integrated programme


### Comprehensive long-term programme maximising physics opportunities:

- Stage 1: FCC-ee : e<sup>+</sup>e<sup>-</sup> Higgs, electroweak & top factory at highest luminosities [ 91 GeV → 365 GeV ]

  Build on large progress made at circular e<sup>+</sup>e<sup>-</sup> colliders over the past decades → reach luminosities beyond 10<sup>34</sup> cm<sup>-2</sup> s <sup>-1</sup>
- Stage 2: FCC-hh: 100 TeV pp collider, energy frontier machine (in addition: eh and ion options)
- Common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC project start is coupled to HL-LHC programme → start operation of FCC-ee around 2048;
   can be accelerated if more resources available







2029 - 2041

2048 - 2063

2074 -

## FCC Feasibility Study

"Europe, together with its international partners, should investigate the **technical** and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage."

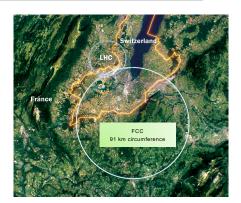


- A Feasibility Study (FS) and its organisational structure have been approved by CERN Council in June 2021
- Report to be released by end of 2025
  - → Basis for a decision at the next Strategy Meeting expected in 2026/27

Mid-term report by end of 2023: all documents have been submitted, review ongoing

#### Mid-term review setup and deliverables defined in CERN/SPC/1183/Rev.2:

- The scientific and technical results be reviewed by the **Scientific Advisory Committee**
- The cost and financial feasibility, which will focus on the first-stage project (tunnel, technical infrastructure, FCC-ee machine and injectors), be reviewed by a Cost Review Committee including external experts.


Both Committees have submitted their report → Discussion in CERN Council





# FCC Feasibility Study

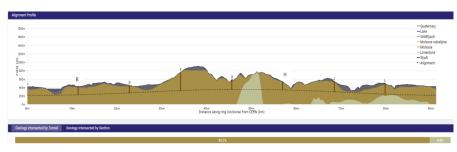
- Demonstration of the geological, technical, environmental and administrative feasibility
  of the tunnel and surface areas and optimisation of the placement and layout of the ring
  and related infrastructure.
- Pursuit, together with the **Host States**, of the **preparatory administrative processes** required for a potential project approval.
- Optimisation of the design of FCC-ee and FCC-hh colliders and their injector chains, supported by R&D to develop the needed key technologies.



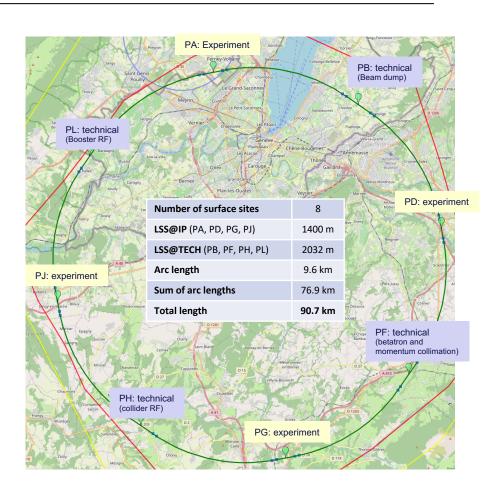
- Elaboration of a **sustainable operational model** for the colliders and experiments in terms of **human and financial resource** needs, as well as **environmental aspects** and **energy efficiency**.
- Development of a **consolidated cost estimate**, as well as the **funding and organisational models** needed to enable the project's technical design completion, implementation and operation.
- Identification of substantial resources from outside CERN's Budget for the implementation of the first stage of a possible future project (tunnel and FCC-ee).
- Consolidation of the physics case and detector concepts and technologies for both colliders.

Feasibility Study funded from CERN budget: 100 MCHF total over 5 years; in addition: ~ 20 MCHF/year for high-field magnet R&D; Additional funding from the European Commission and collaborating institutes (e.g. CHART collaboration with Switzerland)




## Optimised FCC layout (used for further feasibility studies)

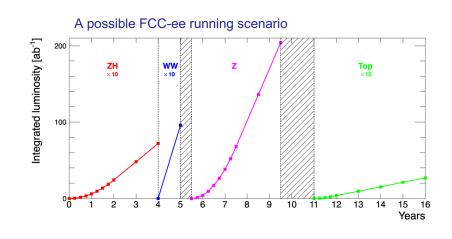
 Layout converged on an optimised placement, chosen out of ~ 100 initial variants;

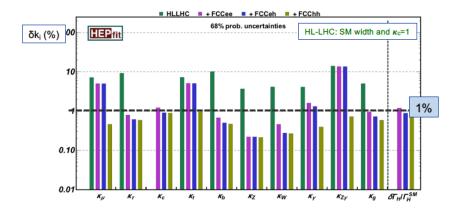

(based on **geology** and **surface constraints** (land availability, access to roads, etc.), **environment**, (protected zones), **infrastructure** (water, electricity, transport), **machine perf.** etc.)

90.7 km ring, 4-fold symmetry
 8 surface points, 2 - 4 experiments

Whole project now adapted to this placement




95% in molasse geology → minimising tunnel construction risk






## FCC physics plans and potential

|                                         | √s                                       | L /IP (cm <sup>-2</sup> s <sup>-1</sup> )     | Int L/IP/y (ab <sup>-1</sup> ) | Comments                                                             |
|-----------------------------------------|------------------------------------------|-----------------------------------------------|--------------------------------|----------------------------------------------------------------------|
| e <sup>+</sup> e <sup>-</sup><br>FCC-ee | ~90 GeV Z<br>160 WW<br>240 H<br>~365 top | 182 x 10 <sup>34</sup><br>19.4<br>7.3<br>1.33 | 22<br>2.3<br>0.9<br>0.16       | 2-4 experiments  Total ~ 15 years of operation                       |
| pp<br>FCC-hh                            | 100 TeV                                  | 5-30 x 10 <sup>34</sup><br>30                 | 20-30                          | 2+2 experiments<br>Total ~ 25 years of<br>operation                  |
| PbPb<br>FCC-hh                          | √ <u>s<sub>NN</sub></u> = 39TeV          | 3 x 10 <sup>29</sup>                          | 100 nb <sup>-1</sup> /run      | 1 run = 1 month operation                                            |
| ep<br>Fcc-eh                            | 3.5 TeV                                  | 1.5 10 <sup>34</sup>                          | 2 ab <sup>-1</sup>             | 60 GeV e- from ERL<br>Concurrent operation<br>with pp for ~ 20 years |
| e-Pb<br>Fcc-eh                          | $\sqrt{s_{eN}}$ = 2.2 TeV                | 0.5 10 <sup>34</sup>                          | 1 fb <sup>-1</sup>             | 60 GeV e- from ERL<br>Concurrent operation<br>with PbPb              |





### A multi-stage facility with enormous physics potential:

**FCC-ee**: - Significant improvement in Higgs couplings

- Huge electroweak potential

 $(\delta m_Z \sim 100$  keV,  $\delta \Gamma_Z \sim 25$  keV,  $\delta m_W < 500$  keV,  $\delta m_t \sim \!\! 45$  MeV )

- Large potential in flavour physics

**FCC-hh**: - Energy frontier machine (x10 LHC)

- Ultimate Higgs precision

 Also provides heavy-ion collisions and, possibly, ep / e-ion collisions



## 3. Accelerator R&D Roadmap

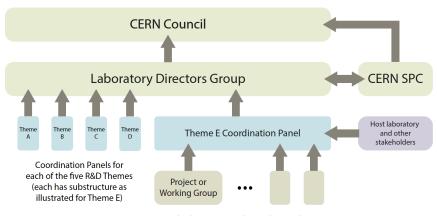


"The European particle physics community must intensify accelerator R&D and sustain it with adequate resources. A roadmap should prioritise the technology, ... Deliverables for this decade should be defined in a timely fashion and coordinated among CERN and national laboratories and institutes."





https://arxiv.org/abs/2201.07895


#### Key questions addressed:

- What R&D remains to be done towards future facilities?
- What are the priorities?
- How long might it take? How much will it cost?
- What different options and trade-offs exist?
- What are the dependencies or conflicts between activities?

Goal: provide the evidence allowing future decision-making by the field



## Implementation: Coordination Structure of the Accelerator R&D



Multiple projects within each R&D Theme

 Structure for cooperative, coordinated and focussed R&D towards future machines set up;

Strong involvement of European National Laboratories and other institutes

Coordination panels formed, work started

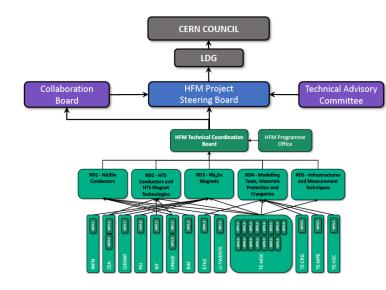
#### **Coordination panel chairs**

Magnets: M. Lamont (CERN), P. Vedrine (IRFU)
RF: G. Bisoffi (INFN-LNL), Peter McIntosch (RAL)
Plasma: W. Leemans (DESY), Rajeev Patahill (RAL)
ERL: J. D'Hondt (Brussels), M. Klein (Liverpool)
Muons: S. Stapnes (Oslo), D. Schulte (CERN)

#### Focus on five R&D Themes:

- High field magnets
- RF structures
- Plasma / Laser acceleration
- Energy-recovery Linacs
- Muon Beams




## **High-field Superconducting Magnets**

- Key technology for future accelerators (hadron colliders, muon colliders, neutrino beams, ...)
- To reach the required field strength of 16 20 T for FCC-hh, new technologies have to be established and brought into industrial production

(Present candidates: Nb<sub>3</sub>Sn and High-Temperature Superconductors (HTS), ...)

### **Accelerator Roadmap:**

- Encompass Nb<sub>3</sub>Sn and HTS (REBCO, ...) developments
  - Demonstrate Nb<sub>3</sub>Sn magnet technology for large-scale deployment
  - Demonstrate the suitability of HTS for accelerator magnet applications
- "Vertically integrated" approach to R&D
  - Development of all aspects from conductors to cables to magnets to systems
  - Emphases: full system optimisation, fast turnaround for R&D







### Other Accelerator R&D areas

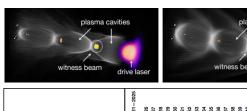
#### **RF Structures:**

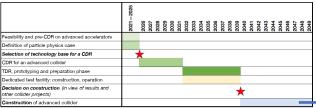
 Overall goal: optimisation of RF structures and quality; beneficial for many projects

Working groups: Bulk Nb, thin films, couplers, NC high gradients, RF power sources, low level RF (control), ...

[CERN, CEA-F, CNRS-F, INFN-I, Helmholtz-D, STFC-UK, ...]

#### Plasma / Laser acceleration:


 Panel proposes a plasma and laser accelerator R&D roadmap that should be implemented and delivered in a three pillar approach


By next strategy: A feasibility and pre-conceptual design report, i.e. evaluate the potential and performance reach for colliders

"The recently proposed HALHF concept may act as a spur to the improvement of specific plasma-acceleration techniques"
 B. Foster et al. New J. Phys. 25 (2023) 093037, [arxiv:2303.10150]
 but: "HALHF cannot be built tomorrow: many unsolved problems remain."

[DESY-D, INFN-I, STFC-UK, ...]



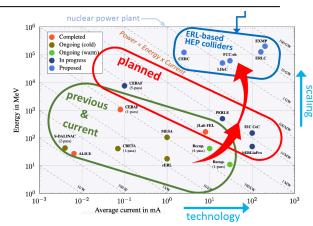




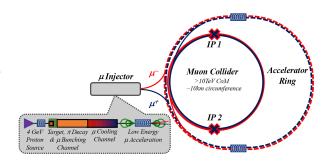


### Other Accelerator R&D areas

#### **Energy-Recovery Linacs:**


- Principles or ERLs have been successfully demonstrated
  - → reduced power consumption, high injector brightness, beam dump at injection energy
- Focussed technical R&D into key technologies to develop or upgrade European facilities for the mid-2020s (e.g. PERLE at IJCLab) (high-current electron sources, high-power superconducting RF technology, ...)

[CNRS-F, Helmholtz-D, ...]

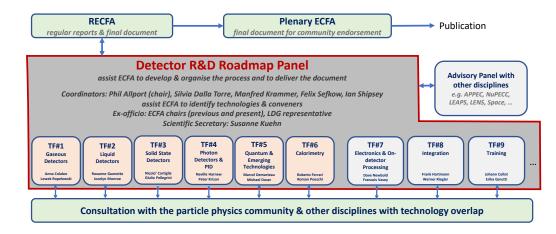

#### **Muon Beams:**

- Potentially interesting path to realise high-energy lepton colliders, however, the technology must overcome several significant challenges
- Roadmap Objectives: again focussed on the "plausibility case"
  - → Examine the key technical barriers and cost drivers before the next strategy
  - → Develop muon-collider concept (focus on 10 TeV, with 3 TeV as potential initial stage → assessment report by 2026

[CERN, INFN-I, STFC-UK, CEA-F, ...]



Programme is relevant to both absolute performance and sustainability of future machines




## 4. Detector R&D Roadmap



https://cds.cern.ch/record/2784893

- As suggested by the 2020 ESPP, a Roadmap for Detector R&D has been developed; Released at the end of 2021
- Work was organised by a Detector R&D Roadmap Panel (ECFA)

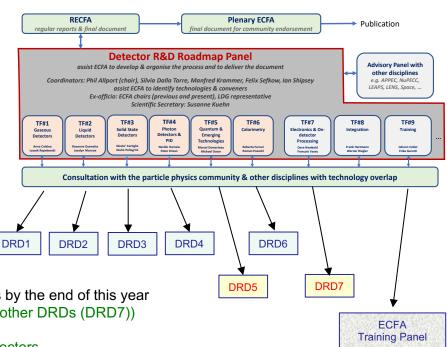


- Task forces were composed of experts from the community covering key sub-topics in the relevant technology areas; followed by full community involvement, bottom-up approach
- Implementation defined throughout 2022

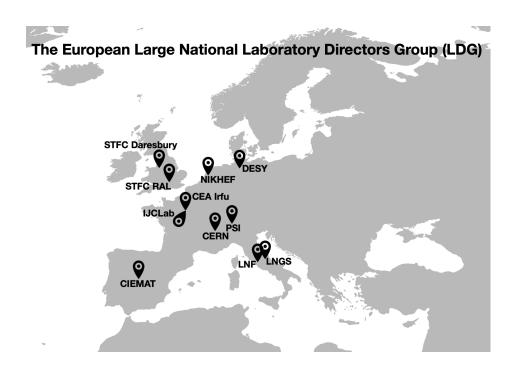


## Detector R&D Roadmap

- The implementation of the roadmap foresees the formation of Detector R&D Collaborations (DRDs) at CERN;
- Five proposals have been submitted and are under review by the newly established **Detector R&D Committee** (DRDC) at CERN with support by the ECFA Detector Panel
  - DRD1: gaseous detectors
  - DRD2: liquid detectors
  - DRD3: solid state detectors
  - DRD4: particle identification and photon detection
  - DRD6: calorimeters


DRD5 (quantum, emerging technologies) and

DRD7 (electronics, transversal activity, LoI exists) will submit proposals by the end of this year (later timescale due to: internal coordination (DRD5), coordination with other DRDs (DRD7))


DRD8 will probably follow later, focussing on mechanics of tracking detectors

- Collaborations are open for world-wide collaboration; participation from outside Europe is very welcome!
- First decisions on approval expected in Dec. 2023 (CERN Research Board), for startup in Jan. 2024
- MoUs to follow in 2024, funding agency involvement via RRB-like structure



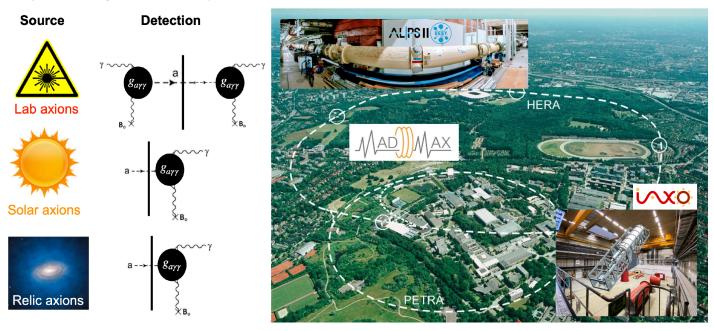


## 5. Activities in European Laboratories (beyond CERN)



All European Laboratories are strongly engaged in the described activities and complement and support CERN

- Accelerator R&D
- Detector construction for HL-LHC and other experiments
- Detector R&D
- Physics exploitation

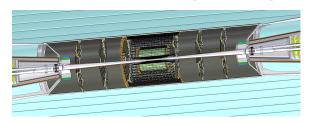

In addition, they carry out their **own**, **complementary Physics Programme** 

→ A few examples → next slides

# DESY (Germany)

### **Axion Experiments at DESY**

**Complementarity and model dependencies** 




Light-shining-through-a-wall and solar axion searches will reach sensitivities beyond present-day astrophysics limits with unique discovery potentials independent of cosmological assumptions

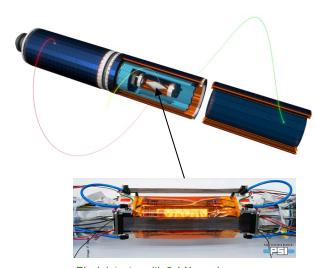


## Frascati (LNF, Italy)

- Running two accelerator facilities:
  - The DAΦNE e<sup>+</sup>e<sup>-</sup> collider (1 GeV c.m.) with the annex Beam Test Facility (BTF)
  - The SPARC\_LAB linear accelerator complex devoted mainly to plasma acceleration studies
- Headquarter of European initiative EuPRAXIA (beam-driven plasma acceleration → new accelerator complex)
- FCC-ee Interaction region design



 KLOE detector → Fermilab (near detector for DUNE)


## PSI (Switzerland)

- Strong participation in magnet R&D programme
- Dedicated Lepton-flavour violations experiments

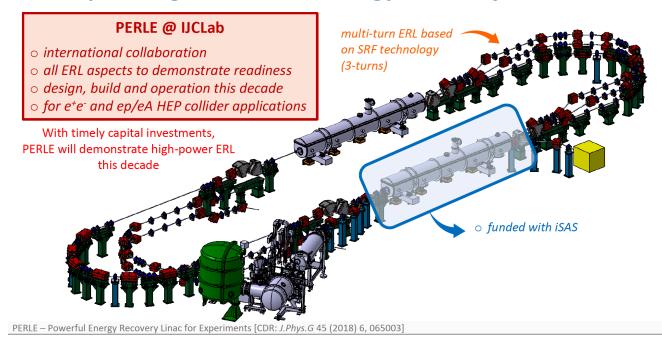
e.g. MEG II: 
$$\mu \rightarrow e\gamma$$
 (< 3.1 10<sup>-13</sup>)

Mu3e:  $\mu^+ \rightarrow e^+e^-e^+$ 

Sensitivity: ~ 10<sup>-15</sup> (~ factor 500 improvement)



Pixel detector with 0.1  $X_0$  per layer, 50  $\mu$ m HVMAPS sensors




# IJCLab (France)



**European Committee for Future** 

## **Upcoming facilities for Energy Recovery Linac R&D**



# Summary

- With the LHC and the HL-LHC programme, Europe has an ongoing unique physics programme at CERN
- To prepare for the future ambition of operating a Higgs factory, followed by a hadron collider of about 100 TeV, CERN has launched a feasibility study for the FCC
  - Mid term report submitted, under review
  - Very significant progress on many areas

FCC-ee technology is mature, construction can proceed in parallel to HL-LHC operation and physics can start a few years after the end of the HL-LHC operation;

FCC-hh will reuse same civil engineering and large part of FCC-ee technical infrastructure 
→ optimisation of overall investment

- Europe has set up intensive R&D programmes for accelerator and detector R&D
- Both programmes, as well as the (HL)LHC and FCC programmes, are strongly supported by the National Laboratories in the European countries

