Testbeam & Telescope

shan (at) tauex.tau.ac.il shan.huang (at) desy.de

Testbeam layout

- Optimal layout for telescope?
 - TB21: equidistant
 - TB22: two planes close to DUT
- Hardware:
 - 6 Alpide Si sensors (27x29 um2)
 - Mimosa26/Adenium?
- Software:
 - Corryvreckan (since TB20)
 - reads from "raw" data
 - aligns telescope
 - Telescope-sensor sync./align. needs to be done separately

- Four-step alignment
 - 1. Pre-alignment
 - 2. Alignment on x-y
 - 3. Alignment on rotation
 - 4. Alignment on x-y and rotation
- Tracking models:
 - Simple straight line (SSL)
 - General broken line (GBL)
- TB22: alignments finished on GBL
 - 25 alignments for every shift or change of DUT or change of beam energy
 - Reconstruction for every run (~300 runs)

GBL: NIMA **673** 107 (2012)

- Trajectory displacements are allowed
- Displacement uncertainty calculated based on energy and length of air gap

Compare between hardware parameters and the ones used in alignment and reconstruction

	Telescope sensors		Software
	MIMOSA26	ALPIDE	Corryvreckan
Pixel pitch [um]	18.4×18.4	29.24×26.88	29.24×26.88
Pixel number	<u>1152× 576</u>	1024× 512	<u>1152× 576</u>
Spatial res. [um]	5.3×5.3	8.44×7.76	5.0×5.0
Time res. [us]	115.2	10.0	10.0

- Residue comparison between two models
 - local coordinates (does not matter much)
 - after full alignment
 - from the first plane (farthest from the ref.)
 - GBL: 3.6 um; SSL: 21.1 um

- Residue comparison between two models
 - local coordinates (does not matter much)
 - after full alignment
 - from the first plane (farthest from the ref.)
 - GBL: 3.6 um; SSL: 21.1 um
- Chi² over n_{dof}:
 - GBL has MPV between 1 to 2
 - Recommended cut at 5 (source needed?)

- Residue comparison between two models
 - local coordinates (does not matter much)
 - after full alignment
 - from the first plane (farthest from the ref.)
 - GBL: 3.6 um; SSL: 21.1 um
- Chi² over n_{dof}:
 - GBL has MPV between 1 to 2
 - Recommended cut at 5 (source needed?)
- P-value distribution
 - Both are not flat enough

- Residue comparison between two models
 - local coordinates (does not matter much)
 - after full alignment
 - from the first plane (farthest from the ref.)
 - GBL: 3.6 um; SSL: 21.1 um
- Chi² over n_{dof}:
 - GBL has MPV between 1 to 2
 - Recommended cut at 5 (source needed?)
- P-value distribution
 - Both are not flat enough
- Asymmetric on x-y direction
 - Planes 4-5 sunk due to unbalanced load (TB22 only)

"Pull" function should be a normal dist. $\frac{1}{2}$ with $\mu = 0$ and $\sigma = 1$

Telescope & Sensor

- Gap of event between sensor channels
- The gaps are used to manually align telescope and sensor

y_DUT

x_DUT

_____pad_num==2

LUXE ECAL TB22 Run4484

___pad_num==1

Telescope & Sensor

- Gap of event between sensor channels
- The gaps are used to manually align telescope and sensor
- Different ADC distribution
 when shooting electron to the
 centre and to the edge
- When shooting to the edge, puzzling pattern of sensor response appears

Conclusion & Outlook

- Telescope alignment has almost finished, needs fine tune
 - Multiple scattering considered (general-broken-line model)
 - Residue < 5 um; σ_{pull} better than 1; chi2/ndof has MPV in 1 to 2
 - unbiased on x direction; biased on y direction (unbalanced load in TB22)
- Uncertainty from telescope benchmark:
 - intercept uncertainty ~residue = 5 um
 - slope uncertainty \sim 2*residue/length_{telescope} = 5.0 x 10⁻⁶
 - Additional uncertainty from scattering at the last layer (\sim 30 um)
- Alignment between sensor & telescope
 - Manually done by looking into the "dead"-area dip
 - (Possible) automatic alignment by maximising events in 5x5 square