

ZTF Galactic Science working group update

(Chrs)

ZTF team meeting, May 2023, DESY

Zach Vanderbosch On behalf of the WG

The ZTF Galactic Science Team

Paula Szkody (**co-Lead**) Zach Vanderbosch (**co-lead**) Eric Bellm Kevin Burdge Ilaria Caiazzo Judy Cohen Michael Coughlin **Kishalay De** Andrew Drake Kareem El-Badry (Fall 2023) Boris Gaensicke Matthew Graham J.J. Hermes Lynne Hillenbrand

Keith Inight Rocio Kiman Albert Kong Shri Kulkarni Ashish Mahabal Pranav Nagarajan **Chow-Choong Ngeow** Tom Prince Mike Rich Tony Rodriguez Jan van Roestel Ben Roulston David Wang Natsuko Yamaguchi

Why and how do we use ZTF?

- 1. Stellar remnants
- 2. Binary star physics and evolution
- 3. Accretion processes
- 4. High energy astrophysics
- 5. Stellar structure
- 6. Extrasolar asteroids/comets
- 7. Age/luminosity/period relations

- 1. Mostly **archival photometry** searches for (periodic) variability
 - a. Orbital periods
 - b. Rotations periods
 - c. Pulsations periods
 - d. Irregular dips/transits/eclipses
- 2. **Real-time (alert)** searches for outbursting stars

Our big challenge:

identify objects of interest from the 2 Billion sources

- External catalogues (Gaia, PS1, SRG, Fermi, SDSS-V, etc)
- ZTF alerts (positive and negative)
- Period searches & other **ZTF variability metrics**
- ZTF-SCoPe machine learning classification of persistent point sources

The Quarter Century Sky (QCS) Project

Matthew Graham, Tom Prince, George Djorgovski, Andrew Drake, Shinn Taniya, Zach Vanderbosch, Ashish Mahabal, Kareem El-Badry

Developing a database of light curves for persistent sources covering a baseline of around 25 years

CRTS + PTF + ZTF (and potentially more)

Science Snapshots from the ZTF Galactic Science Group

Discovery of Polars from SRG/eROSITA + ZTF

- ~120 polars known
- ~200—300 in eRASS1
- Questions to answer:
 - X-ray luminosity function
 - Mean mass of WD
 - Orbital period distribution

Tony Rodríguez (Caltech)

eFEDS/ZTFJ0850+0443

- One of 8 polars showing pre-eclipse absorption from accretion stream.
- M_{WD} = 0.81 ± 0.08 M_{sun}

Artist rendition, used with permission of M. Garlick

Spectroscopic Follow-up of NS and BH Candidates in Gaia DR3

Pranav Nagarajan, Kareem El-Badry, et al.

1.6

3456522854428709633

0.4

Primary Mass (Mo)

1.4

1.8

2.0

Period = 0.430924 days

0.8

1.0

0.6

Phase

2.2

10

Sodium enhancement in Evolved Cataclysmic Variables

Natsuko Yamaguchi, Kareem El-Badry, Antonio C. Rodriguez, Maude Gull, Benjamin R. Roulston

1) 21 evolved CVs found by the Birth of the ELMs survey, with the use of ZTF light curves.

2) Carried out follow-up high resolution spectroscopy and measured Na abundances using the 5900 AA doublet.

 \rightarrow find significant enhancements:

[Na/H] = 0.3 - 1.5 dex, with a median of 0.956 dex

 3) Ran MESA models of evolved CVs
 → predict significant Na enhancement not seen in normal CVs but underpredict them compared to observations

X-ray Binaries in the ZTF alert stream

David Wang, Eric Bellm, 2023 in prep

Goal: Find new XRBs by looking for optical outbursting in ZTF at positions of known X-ray sources. Pipeline \rightarrow

Faint detection of hard x-rays by Swift indicates this could be a hard-only failed outburst.

Optical surveys are a good pathway for finding these low luminosity outbursts, which may otherwise be too faint for all-sky x-ray monitors

Candidate XRB found in the pipeline, first outburst in 10 years

ZTF discovered a failed transition outburst from the black hole X-ray binary XTE J1859+226

Eric Bellm + friends (2023 in prep)

- Automated watchlist provided early warning of first outburst since 1999

- X-ray luminosity was too low (~10³⁵ erg/s) to trigger all-sky monitors and to irradiate the entire disk ⇒ short, fast-evolving outburst that stayed in the low/hard state

- OIR synoptic surveys provide a good way to search for these events!

Dwarf novae and other Cataclysmic Variables

Paula Szkody & Jan van Roestel

Previously: GROWTH filter based on rise time **Now: Fritz** filter for outbursts of blue stars

CVs found with ZTF: 3206 (Paris) **⇒ 4282 (Now)** Includes 2608 previously known, but not complete

Compact binary stars with extra physics

Jan van Roestel

ZTFJ0836+2258

- Eclipses: 66 minute period
- Pulsations(?): ~19 minute period

ZTFJ1743+1113

- F-type star + hot compact source
- 77 day(!) orbit
- Unknown brightening before and after each eclipse

Probing Common-Envelope Evolution with **Dwarf** Carbon stars Ben Roulston (Caltech)

- Main-Sequence stars with C/O>1, enhanced by a binary companion. Show strong carbon molecular bands in optical spectra
- 34 periodic dCs in ZTF with P<2d (down to $P\sim2hrs$) —> Post common-envelope binaries

• Would like to expand sample of known dCs using Gaia+? (SEDMv2?) then search for periods in ZTF

A highly magnetized and rapidly rotating white dwarf as small as the Moon

Finding a population of rapidly rotating and highly magnetized WDs

- Candidates double white dwarf mergers
- Reveal the characteristics of mergers and constrain merger rates
- Allow to study magnetic WDs

Finding exotic white dwarfs

Janus: double-faced white dwarf

ZTF and Globular Clusters

Chow-Choong Ngeow (NCU-Taiwan), et al.

- Goal: calibrate various old population distance indicators in gr(i)-band, most of them for the *first time* \rightarrow can be applied in, e.g. LSST, HSC-SSP, etc surveys observed with gri filters
- Why G.C.? Good → well-determined (and homogeneous) distance, most with low or vanished extinction, some rich in variable stars; Bad → blending (need PSF photometry + small pixel scale)
- Why ZTF? ZTF out-number PS1 in terms of number of observations!

 Table 1. Comparison of optical time-domain surveys in the northern sky.

	$_{ m Survey}a$	$_{\rm Filters}b$	Pixel Scale ^{C}	$_{\rm Photometry}d$	Depth
est 💳 🔿	ZTF	gri	1.01	PSF & AP	$r\sim 20.6$
	PS1 3π	grizy	0.258	PSF & AP	$r\sim21.8$
	ATLAS	oc	1.86	PSF	$m\sim 19.5$
	ASAS-SN	gV	8.0	AP	$V\sim 17$
	CSS		1.5	AP	$V\sim 19.5$
	LINEAR		2.25	AP	$m\sim 18$
	SuperWASP	-	13.7	AP	$V \sim 15$
	SuperwASP		15.7	АГ	$v \sim 15$

B

Distance Indicators	Publication	ZTF Data
Contact binaries	AJ 162:63 (2021)	DR 3 + private
RR Lyrae	AJ 163:239 (2022)	DR 7 + private
Type II Cepheids	AJ 164:154 (2022)	DR 10 + private
Yellow Post-AGB stars	AJ 164:166 (2022)	DR 10 + private
Anomalous Cepheids	AJ 164:191 (2022)	DR 11 + private
SX Phoenicis	AJ 165:190 (2023)	DR 13 + private
Miras	Work in-progress	DR16 + private
NGC6760_V3 Period =	ZTF II/III wish-list:	
		← more i-band data
250 500 750 1000 MID 590	18	

More Outbursting Young Stars!

Michael Kuhn & Lynne Hillenbrand

Spectroscopic Observations of the EX Lup-type Outburst of V1741 Sgr 11

rre 4. Keck/LRIS spectrum of V1741 Sgr during outburst. Regions affected by strong atmospheric absorption are colored gray. Prominent features are ated.

ure 5. IRTF/SneX spectrum of V1741 Ser during outburst. Regions affected by strong atmospheric absorption are colored grav. The spectrum has been

https://www.astronomerstelegram.org/?read=15721 and MNRAS paper in preparation

19

White Dwarfs with Transiting Planetary Debris:

Z. Vanderbosch, J.J. Hermes, Soumyadeep Bhattacharjee, Joseph Guidry

Using variability metrics best suited to **non-periodic**, **irregular** variables, ZTF has enabled a rapid increase in sample size

White Dwarfs with Transiting Planetary Debris:

Z. Vanderbosch, J.J. Hermes, Soumyadeep Bhattacharjee, Joseph Guidry

Applying same metrics tested on ZTF data to other surveys reveals new candidates. **Need longer-baselines (e.g. QCS)**

Thank You!

