Looking forward to O4

Jonathan Gair, Albert Einstein Institute Potsdam

Talk outline

- * Review of results to end of O3
- Upgrades introduced for O4
- Expected O4 sensitivity and implications for event rate
- * Plans for alerts in O4
- (if time permits) Things I'm looking forward to in O4: cosmology, rapid and robust PE with Dingo

Gravitational wave detectors

- * A network of ground-based detectors is currently operating
 - LIGO: two 4km interferometers in Hanford, WA and Livingston, LA. Advanced LIGO began taking data in September 2015. O4 observing run starting May 2023.
 - Virgo: 3km interferometer at Cascina, near Pisa, Italy. Advanced Virgo began to collect data in late July 2017.
 - Japanese detector, KAGRA, came online early in 2020. Third LIGO detector in India under construction.

Previous observing runs

- O1: Sept to Dec 2015; O2: Jan to Aug 2017; O3a: April 1 to Oct 1 2019; O3b: Nov 1 2019 to Mar 27 2020.
- * O4: currently carrying out an engineering run. Observing run scheduled to start on May 24th.

Previous events

Masses in the Stellar Graveyard

Previous events: black holes

- * To date LIGO has seen 90 events with >50% chance of astrophysical origin.
- * The majority (84) are likely BBH events.

LVC BBH properties from GWTC-3 (2021)

Previous events: neutron stars

* Have also seen 7 events which may contain neutron stars. 2 BNS, 2 + NSBH, 1 probably BBH.

Name	$FAR_{min} (yr^{-1})$	$P(m < M_{\rm max, TOV})$	$P(m < M_{\text{low}}^{\text{gap}})$	Classification
GW170817	$< 1 \times 10^{-5}$	0.99	0.97	BNS
GW190425	3.38×10^{-02}	0.67	0.71	BNS
GW190814	$< 1 \times 10^{-5}$	0.06	0.24	BBH
GW200105	2.04×10^{-01}	0.94	0.73	NSBH
GW200115	$< 1 \times 10^{-5}$	0.93	0.96	NSBH
GW190426	9.12×10^{-01}	0.82		NSBH
GW190917	6.56×10^{-01}	0.56	BUTAL - SERVICE	NSBH

LVC BBH properties from GWTC-3 (2021)

Detector Improvements O3 to O4

GOALS

- 400 kW circulating arm power
 - Compare to 200 kW in O3
- Squeezed light efficacy*: 4.5 dB
 - Shot noise region; compare to 2-3 dB in O3

Double laser power More squeezing

- No radiation pressure enhancement from squeezing
- Low frequency technical noise reduction
 - Below 100 Hz

O4 sensitivity: improvements

* As of February, BNS range of 145Mpc/135Mpc achieved in LLO/LHO respectively. Expected final range of 156/143 Mpc to 170 Mpc.

Slide from Gabriele Vajente. Figure credit: J. Driggers, A. Effler

O4 sensitivity

- * O3 BNS range was 130 Mpc for L1 and 110 Mpc for H1.
- * If both L1 and H1 achieve 170 Mpc BNS range, increase sensitive distance by ~40%, sensitive volume by a factor of ~2.8.
- * If L1/H1 reach only 156/143 Mpc, increase sensitive range by ~25%, sensitive volume by a factor of ~1.9.

O4 sensitivity: event rates

- * Inferred merger rates after O3:
 - * BNS: 10 1700 Gpc⁻³ yr⁻¹
 - * NSBH: 7.8 140 Gpc⁻³ yr⁻¹
 - * BBH: 17.9 44 Gpc⁻³ yr⁻¹

	$m_1 \in [5, 20] M_{\odot}$	$m_1 \in [20, 50] M_{\odot}$	$m_1 \in [50, 100] M_{\odot}$	All BBH
	$m_2 \in [5, 20] M_{\odot}$	$m_2 \in [5, 50] M_{\odot}$	$m_2 \in [5, 100] M_{\odot}$	
PDB (pair)	$17^{+10}_{-6.0}$	$6.8^{+2.2}_{-1.7}$	$0.68^{+0.42}_{-0.29}$	$25^{+10}_{-7.0}$
PDB (ind)	$9.4^{+5.6}_{-3.7}$	$11^{+3.0}_{-2.0}$	$1.6^{+0.9}_{-0.7}$	$22^{+8.0}_{-6.0} \\ 37^{+24}_{-13}$
MS	30^{+23}_{-13}	$6.6^{+2.9}_{-2.3}$	$0.73^{+0.87}_{-0.52}$	37^{+24}_{-13}
BGP	$20.0^{+11.0}_{-8.0}$	$6.3^{+3.0}_{-2.2}$	$0.75^{+1.1}_{-0.46}$	$33.0^{+16.0}_{-10.0}$
PS	$27^{+12}_{-8.8}$	$3.5^{+1.5}_{-1.1}$	$0.19^{+0.16}_{-0.09}$	$31^{+13}_{-9.2}$
FM	$21.1^{+11.6}_{-7.8}$	$4.3^{+2.0}_{-1.4}$	$0.2^{+0.2}_{-0.1}$	$26.5^{+11.7}_{-8.6}$
PP	$23.6^{+13.7}_{-9.0}$	$4.5^{+1.7}_{-1.3}$	$0.2^{+0.1}_{-0.1}$	$28.3^{+13.9}_{-9.1}$
MERGED	13.3 - 39	2.5 - 6.3	0.099-0.4	17.9 - 44
PP (O3a)	$16.0^{+13.0}_{-7.7}$	$6.8^{+2.7}_{-1.9}$	$0.5^{+0.4}_{-0.3}$	$25.3_{-9.9}^{+16.1}$

O4 sensitivity: event rates

- * O4 extended to 18 months to enhance prospects for multi-messenger detections.
- * With a 170 Mpc BNS range in both detectors, expect to accumulate 20 times as much VT as O2 (3 times sensitive time, ~7 times sensitive volume) and ~5 times as much as O3 (~1.5 times sensitive time, ~3 times sensitive volume).

Observation Run	Network	Expected BNS Detections	Expected NSBH Detections	Expected BBH Detections
O3	HLV	1_{-1}^{+12}	0^{+19}_{-0}	17^{+22}_{-11}
O4	HLVK	10^{+52}_{-10}	1_{-1}^{+91}	79^{+89}_{-44}

5.2 O4: aLIGO 160-190 Mpc, AdV 90-120 Mpc, KAGRA 25-130 Mpc

O4 plans: alerts

- Updated Public Alert Threshold for O4*
- * The false alarm rate threshold for public alerts will be lowered to 2/day starting in O4. There will therefore be two classes of alerts:
 - **Low Significance** ("Subthreshold" in O3) *gravitational-wave alerts* with false alarm rate greater than 1/month for CBC and 1/year for Burst
 - *Significant gravitational-wave alerts* with false alarm rate less than 1/month and 1/year for Burst that pass automated and manual verification tests.

^{*}May be tuned slightly during the engineering run.

O4 plans: other changes to alerts

- * Early warning (pre-merger) alerts will be provided
- Multiple distribution channels for alerts:
 - * GCN Notices and Circulars as in O3.
 - Kafka based alerts with embedded skymap via SCiMMA and GCN
- * EM-Bright probabilities (*HasNS* and *HasRemnant*) marginalized over large number of equation of neutron star models.
- * Mass-gap moved from p_{astro} to source-properties section of GCN. Called *HasMassGap*.
- * New "significant" field introduced in the notices.

O4 plans: alert timeline

https://emfollow.docs.ligo.org/userguide/analysis/index.html

O4 plans: example alert

```
"alert_type": "Preliminary",
"time_created": "2018-11-01T22:34:49Z",
"superevent_id": "MS181101ab",
"urls": { "gracedb": "https://example.org/superevents/MS181101ab/view/" },
"event": {
    "time": "2018-11-01T22:22:46.654Z",
    "far": 9.11069936486e-14, # FAR < (2/day)
    "significant": False # FAR > 1/month CBC and 1/year BURST
                  True # FAR < 1/month CBC and 1/year BURST
    "instruments": [ "H1", "L1", "V1"],
    "group": "CBC",
    "pipeline": "gstlal",
    "search": "MDC".
    "classification": { "BNS": 0.95, "NSBH": 0.01, "BBH": 0.03, "Terrestrial": 0.01},
    "properties": { "HasNS": 0.95, "HasRemnant": 0.91, "HasMassGap": 0.01},
    "skymap": "U01NUExFICA9ICAgICAgICAgICAgICAgICAgICBUIC8gY29uZm..."
"external_coinc": null }
```

Things to look forward to

Standard siren cosmology

- LVK and external groups use GW events to constrain H₀ using bright and dark sirens.
- Result still dominated by GW170817.

Standard siren cosmology

 Even less information in dark sirens when accounting for uncertainties in population model.

Standard siren cosmology

- * With better galaxy catalogues (e.g., from DES) can get more information from dark sirens, but bright sirens much more robust.
- Need more counterpart events!

 $H_0 = 72.77^{+11} \text{--} 7.55 \ km \ s^{-1} \ Mpc^{-1}$

Palmese et al. (2021)

High mass BBH counterparts (?)

- Could also see more high-mass BBH events with possible counterparts, like GW190521.
- If these are real associations, the events can be used for cosmology, as well as providing insights into BBH formation.

Chen+ (2021)

Rapid and robust PE: DINGO

- * In O4 we will start to use DINGO for parameter estimation.
- * This is a machine learning framework that can directly generate samples from the posterior distribution given input data.
- * It represents the posterior via a *normalising flow*, i.e., a mapping to a Normal distribution.

* Allows inference in O(seconds). Posterior distributions are near-indistinguishable from those produced via standard methods. Also have DINGO-IS that uses importance sampling to correct the final results (slower, O(hours)).

DINGO performance

GW150914

- Much better agreement with standard samplers using GNPE.
- Quantitatively indistinguishable in many cases.

DINGO performance: O3 events

- DINGO allows the use of the most expensive waveform models in parameter estimation.
- * At present, have working implementations for BBH systems with component masses > 10 solar masses.
- Working to extend into BNS and NSBH regime.
- Long term goal: rapid and robust
 PE for use in low-latency.

Summary

- * O4 will start on May 24th and run for 18 months, over a period of 20 months.
- * O4 will start with slightly better sensitivity than O3, and BNS range could reach 170 Mpc later in the run.
- Expect a few BNS and NSBH detections over the duration of O4.
- * Alerts will be sent out. You should expect these alerts with a rate of:
 - one per day (Significant gravitational-wave alerts) based on expected rate of real GW alerts
 - two per day (Low Significance gravitational-wave alerts) based on new threshold
- * Exciting prospects for further multi messenger events, with many applications including cosmology.
- * Various new data analysis methods will be trialled for the first time in O4, include rapid parameter inference using DINGO.