The Large Array Survey telescope

Nora Linn Strotjohann on behalf of the LAST team

Ready, Set, Go! GW workshop Berlin 2023-05-09

http://www.weizmann.ac.il/wao/

The Large Array Survey telescope

Nora Linn Strotjohann on behalf of the LAST team

Ready, Set, Go! GW workshop Berlin 2023-05-09

http://www.weizmann.ac.il/wao/

Idea

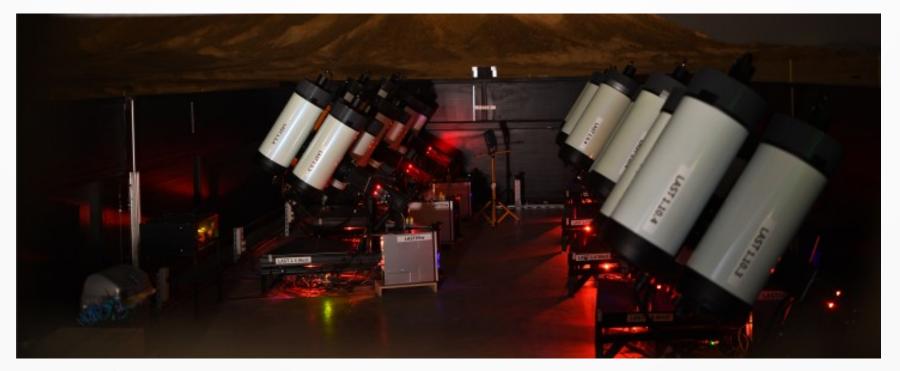
- optimize for survey speed (Ofek & Ben-Ami 2020) → shallow and wide
- many small, off-the-shelf telescopes instead of building a single large one is ~30 times cheaper
- aperture > 20cm to be limited by seeing instead of diffraction
- short focal length (F/2.2) for a wide field of view
- need camera with small (4 micron) pixels to sample the PSF


 system feasible since a few years due to low-noise CMOS cameras with small pixels and computers that can

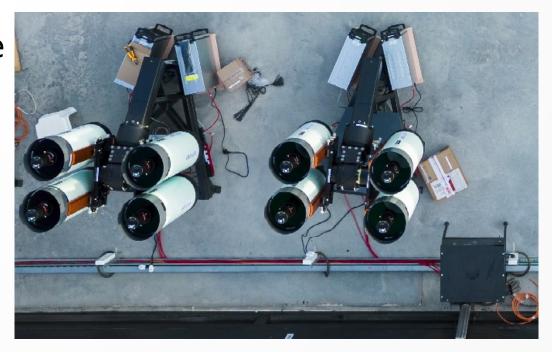
process large amounts of data

Site of the Weizmann Astrophysical Observatory

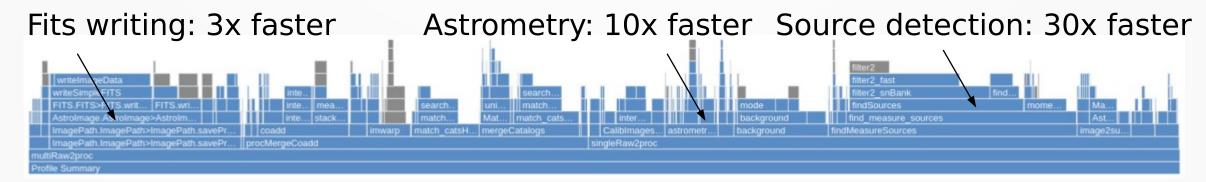
- Kibbutz Neot Smadar in the South of Israel
- excellent seeing, usually clear sky and low humidity
- Dusty, skybrightness degraded to 20.6 mag/arcsec²
- building start: February 2022


LAST Design

- 12 units with 48 telescopes
- 28-cm diameter mirror Celestron with F/2.2
- Parallel: 1.9m telescope with 7.4 sqdeg or in open mode 28cm telescope with 355 sqdeg FoV
- Default visit: 20 20s exposures
- Limiting mags: 19.6 in 20s, 21 in 20x20s
- Unfiltered for maximal light, closest to the Gaia B-band
- Strategy: high- and low-cadence survey, ToOs


LAST data rate

- Raw data: 8000 imgs/hour or 0.9 TB/hour → comparable to LSST
- Processed data: 2.3 TB/hour
 - → will keep only coadds, catalogs, maybe cutouts; delete individual images and raw images after 2 months



LAST pipeline

- Image processing done in real time on computers that control unit
- 2 cameras per computer
- Images cut into 24 subimages (1700x1700 pixels): more precise astrometry & calibration, small data products

Single visit (20x20s) processed in <5min for extragalactic fields

Gravitional-wave follow-up with the Large Array Survey Telescope

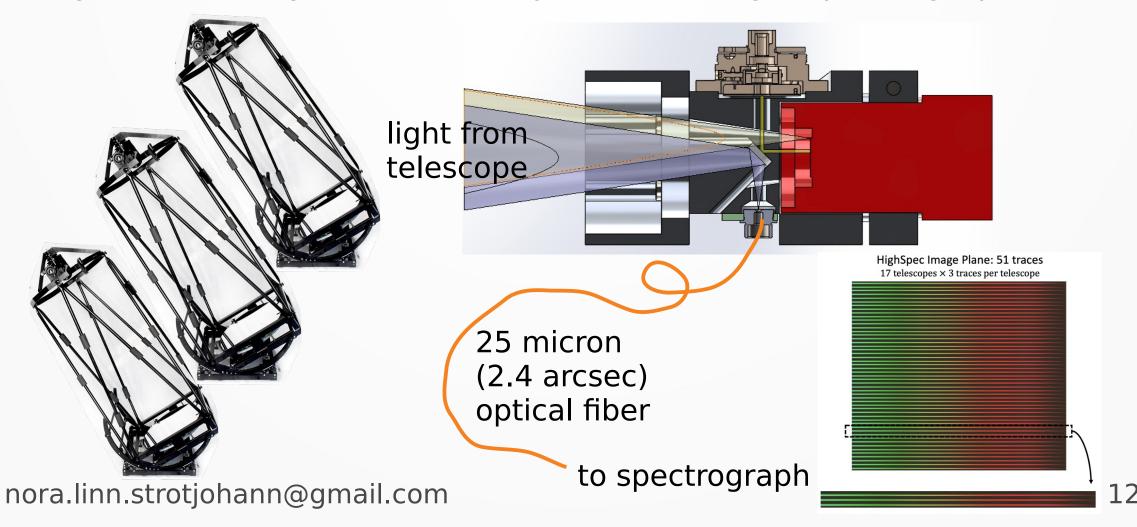
LAST fills in the Asiatic gap

12 units can cover 350 sqdeg instantaneously for 20x20s visit: single unit covers 250 sqdeg/hour (shorter visits possible) probability in observable fields

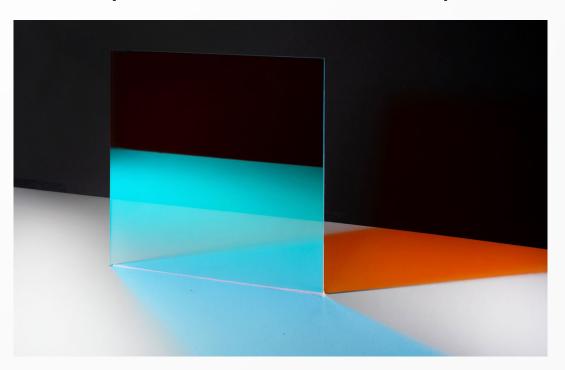
10

number of visits

nora.linn.strotjohann@gmail.com


Current status

- Under commissioning, 32 telescopes deployed
- Individual mounts operate largely autonomously
- photometric pipeline and forced photometry working
- Still missing:
 - remote operation (roof!)
 - communication between units
 - image subtraction


Synergy with future telescopes

 Multi-Aperture Spectroscopic Telescope (MAST): optical fibers feed light from many 60cm telescopes into a single spectrograph

Synergy with future telescopes

- Multi-Aperture Spectroscopic Telescope (MAST): optical fibers feed light from many 60cm telescopes into a single spectrograph
- Panchromatic Survey Telescope (PAST): more sensitive telescopes with dichroics and several cameras for photometric follow-up

Synergy with future telescopes

- Multi-Aperture Spectroscopic Telescope (MAST): optical fibers feed light from many 60cm telescopes into a single spectrograph
- Panchromatic Survey Telescope (PAST): more sensitive telescopes with dichroics and several cameras for photometric follow-up

ULTRASAT: UV telescope with 200 sqdeg field of view (launch in

late 2026)

Science projects during LAST commissioning

- Late-time monitoring of SNe Ic and FBOTs (Ping & Erez)
- Monitoring of white dwarfs: search for binaries or planets (Yarin)
- All-sky survey once a month: reference building and slow transients/variables (Nora)
- Near-Earth Astroids: measure rotation periods, elongation, etc. (David & Eran)
- Occultations: search for rings around asteroids or minor planets (David & Eran)
- Polarization survey: support for CTA (Bochum & Desy groups)
- Minute-scale blazar variability: constrain size of emission region (Simone)

Submitted papers

- "The Large Array Survey Telescope System Overview and Performances" https://arxiv.org/pdf/2304.04796.pdf
- "The Large Array Survey Telescope Science Cases" https://arxiv.org/pdf/2304.02719.pdf
- "The Large Array Survey Telescope Pipeline. I. Basic Image Reduction and Sub Visits Coaddition"
- "Observational characterization of the ejecta from the DART-Dimorphos impact"
- http://www.weizmann.ac.il/wao/

