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A brief outlook

Stellar collisions are important.

Different implications on different spectra.

In all the electromagnetic spectrum.
- In GWs.

- They produce shocks and accelerate particles.

And should be a way to produce neutrinos.
One case looks interesting.

(No claims made).



What I'm going to show and not show.

32 pages, with over 140 equations and 33 plots.
and do a lot of talk.

because that would make me persona non grata.

and do a lot of handwaving.

but numerical simulations are on-going and agree with the
analytical results.



Two regimes and two kind of sources

are completely destructive.
- We “only” have a full electromagnetic signature.
is valid for both MS and RGs.

allow cores of MS stars to
survive.

- Thisis important, because they form a GW source.
are the most promising source.

- Their degenerate cores are a perfect GW source and produce an
afterglow.



Stellar densities around supermassive black holes
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Rates MS-MS collisions
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Rates red giants
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[Electromagnetic signatures over all spectraJ




Evolution of the radiated energy
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Evolution of the temperature
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Effective temperature
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Wiener's law
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Spectral power
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Power evolution
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Photometry
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Comparison with data
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Figure 9. Left panel: AB magnitude as calculated from the theoretical model at a distance of 194.4 Mpc. We give the extreme values that we have adopted
in this work for the free parameter 1 and also 0.05. Right panel: Zwicky Transient Facility (ZTF) report for 2019-10-07 corresponding to the object
ZTF19acboexm by|Nordin et al. . The data taken with ZTFG are marked with squares and the data taken with ZTFR with circles. If the transient was the
result of a stellar collision, it would seem to correspond to a value of 1 < 0.05.

[Amaro Seoane, accepted ApJ 2023]
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What to do with that unique free parameter 7?



MHD simulations

Arepo Arepo documentation

Navigation Arepo is a massively parallel code for gravitational N-body systems and
magnetohydrodynamics, both on Newtonian as well as cosmological
backgrounds. It is a flexible code that can be applied to a variety of
different types of problems, offering a number of sophisticated simulation
algorithms. A description of the numerical algorithms employed by the code
is given in the public release code paper. For a more in depth discussion
about these algorithms, the original code paper and subsequent

Diagnostic output publications are the best resource. This documentation only addresses the
Related codes question how to use the different numerical algorithms.

Code development

Getting started
Simulation examples
Code Configuration
Parameterfile
Simulation output

Arepo was written by Volker Springel (vspringel@mpa-garching.mpg.de)
Quick search with further development by Riidiger Pakmor (rpakmor@mpa-
garching.mpg.de) and contributions by many other authors (www.arepo-
code.org/people). The public version of the code was compiled by Rainer
Weinberger (rainer.weinberger@cfa.harvard.edu).

Go

Overview

The Arepo code was initially developed to combine the advantages of finite-
volume hydrodynamics with the Lagrangian convenience of smoothed
particle hydrodynamics (SPH). To this end, Arepo makes use of an
unstructured Voronoi-mesh which is, in the standard mode of operating the
code, moving with the fluid in a quasi-Lagrangian fashion. The fluxes
between cells are computed using a finite-volume approach, and additional
spatial adaptivity is provided by the possibility to add and remove cells from
the mesh according to user-defined criteria. In addition to gas dynamics,
Arepo allows for additional collisionless particle types which interact only
gravitationally. Besides self-gravity, forces from external gravitational
potentials can also be included.

[From the web page of Arepo, https://arepo-code.org]
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Stellar collisions with Arepo
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[Gravitationa l-wave signatu re]




Why is this interesting?

Fingerprint of a stellar collision and nothing else.

there will be an EM afterglow.

- An EM signature
- followed by a GW one
- and an additional afterglow.

...Couldn't ask for more.

20



Evolution of the gaseous cloud
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Evolution of the gaseous cloud
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Evolution of the gas timescale: Merger after 34.7 months
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Impact of gas friction: Chirp mass evolution
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Impact of gas friction: Luminosity distance evolution
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Characteristic strains: Time domain
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Characteristic strains: Frequency domain
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Some points to remind

but there are a lot of
things to look at

because of cross section
they will mimick Type la SN.

in danger, because the masses and
properties of the mergers are very different.

can be envisaged as white dwarfs.
they will produce a subsequent afterglow.

will lead to maintained
pulsations until the stars merge.

but such collisions
reproduce their behaviour.
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To summarise

and
found that the GW signature will be unique.

we can be sure it was a collision.
are true multimessenger probes.

I am working out MHD
simulations which will help to

- Fix the only free parameter of my calculations, 7.
- Allow for systematic searches in the catalogs.

- Solve the shock properties.

- Allow us to estimate particle acceleration.

- Potentially look into neutrino emission.
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B Working on the second part analytically
B Have derived a few interesting and unexpected results

B Again, the results seem to be confirmed with numerical
simulations

- High Mach numbers during the collisions: Particle acceleration.

30
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analytically
interesting and unexpected results

seem to be confirmed with numerical
simulations

- High Mach numbers during the collisions: Particle acceleration.
- Formation of a jet of velocities ~ 3 x 103 km/s.

- High Mach numbers of the gaseous cloud with the ISM,
acceleration.

- The collision is likely to ignite fusion.

- Afterglow likelihood very high.
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