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A brief outlook

■ Context: Stellar collisions are important.
■ Collisions are mimickers:

Different implications on different spectra.
■ Multimessenger probes:
‑ In all the electromagnetic spectrum.
‑ In GWs.
‑ They produce shocks and accelerate particles.
‑ And should be a way to produce neutrinos.
■ Potential observations: One case looks interesting.

(No claimsmade).
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What I’m going to show and not show.

■ This was a lengthy paper of some
32 pages, with over 140 equations and 33 plots.

■ I’m going to flash some figures and do a lot of talk.
■ I’m NOT presenting the whole paper today

because that wouldmakeme persona non grata.
■ I will show no equations and do a lot of handwaving.
■ This is a completely analytical paper

but numerical simulations are on‑going and agree with the
analytical results.
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Two regimes and two kind of sources

■ High‑velocity sources,∼ 104 km/s are completely destructive.
‑ We “only” have a full electromagnetic signature.
■ The electromagnetic description is valid for bothMS and RGs.
■ Lower velocity sources,∼ 103 km/s allow cores of MS stars to

survive.
‑ This is important, because they form a GW source.
■ Red giants are themost promising source.
‑ Their degenerate cores are a perfect GW source and produce an
afterglow.
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Stellar densities around supermassive black holes

[Amaro Seoane 2018, based on Merritt 2006, Schoedel 2002, Lauer 1998]
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Rates MS‑MS collisions
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Rates red giants
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�Electromagnetic signatures over all spectra
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Evolution of the radiated energy
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Evolution of the temperature
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Effective temperature
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Wiener’s law
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Spectral power
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Power evolution
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Photometry
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Comparison with data

[Amaro Seoane, accepted ApJ 2023]
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What to do with that unique free parameter η?
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MHD simulations

[From the web page of Arepo, https://arepo‑code.org]
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Stellar collisions with Arepo

[Ryu, Amaro Seoane & Taylor, in progress.] 18
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�
�Gravitational‑wave signature
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Why is this interesting?

■ The GW signature is unique.
Fingerprint of a stellar collision and nothing else.

■ In the case of the RGs there will be an EM afterglow.
■ We have hence
‑ An EM signature
‑ followed by a GW one
‑ and an additional afterglow.
...Couldn’t ask for more.
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Evolution of the gaseous cloud
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Evolution of the gaseous cloud
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Evolution of the gas timescale: Merger after 34.7 months

0.1

1

10

100

1000

10000

100000

1 × 106

1 × 107

0.1 1 10

0.5

1

2
3

0.1
2.3 2.5 2.7 3

T
g
as

(y
rs

)

Time from the formation of the binary (yrs)

η = 1
η = 0.5
η = 0.3
η = 0.1

0.5

1

2
3

0.1
2.3 2.5 2.7 3

23



Impact of gas friction: Chirp mass evolution
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Impact of gas friction: Luminosity distance evolution
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Characteristic strains: Time domain
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Characteristic strains: Frequency domain
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Some points to remind

■ Collisions seem to have been neglected but there are a lot of
things to look at

■ Rates are important, in particular RGs because of cross section
■ When they collide they will mimick Type Ia SN.
■ Cosmic ladder argument in danger, because themasses and

properties of themergers are very different.
■ Degenerate cores can be envisaged as white dwarfs.
■ When they merge they will produce a subsequent afterglow.
■ Grazing collisions in globular clusterswill lead tomaintained

pulsations until the stars merge.
■ Pulsating stars are another rung in the ladder but such collisions

reproduce their behaviour.
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To summarise

■ I have given a detailed analytical description of the process and
found that the GW signature will be unique.

■ Thanks to the GW signalwe can be sure it was a collision.
■ Stellar collisions are truemultimessenger probes.
■ As an on‑going work with T. Ryu I amworking out MHD

simulations which will help to
‑ Fix the only free parameter of my calculations, η.
‑ Allow for systematic searches in the catalogs.
‑ Solve the shock properties.
‑ Allow us to estimate particle acceleration.
‑ Potentially look into neutrino emission.
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Spoiler

■ Working on the second part analytically
■ Have derived a few interesting and unexpected results
■ Again, the results seem to be confirmedwith numerical

simulations

∙ High Mach numbers during the collisions: Particle acceleration.

∙ Formation of a jet of velocities∼ 3× 103 km/s.
∙ High Mach numbers of the gaseous cloud with the ISM,
acceleration.

∙ The collision is likely to ignite fusion.
∙ Afterglow likelihood very high.
∙ Right now struggling with radiative transfer, rotation and magnetic
fields.
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