Data driven search for primordial black holes with VERITAS

- Here we show the outcome of K. Pfrang's PhD work
- A VERITAS paper is under preparation (The following are not official results!)

Konstantin Pfrang, Elisa Pueschel & Iftach Sadeh (DESY)

May 2023

iftach.sadeh@desy.de

VERITAS

• The VERITAS observatory

- Fred Lawrence Whipple Observatory, Arizona, USA.

2

y-ray source detection à la VERITAS

"Classical" approach

- Spatial (on/off) strategy
 - Offset the centre of the FoV with respect to the source position
 - Select "off" regions with expected uniform detector response
- Challenges
 - Uncertainties on instrument simulations (e.g., detector efficiency)
 - Uncertainties on physical backgrounds (e.g., galactic foregrounds)
 - Precise modelling of observing conditions (e.g., clouds, night-sky background)
 - Subtraction of artefacts (e.g., stars, satellites)

ource position tor response

tector efficiency) actic foregrounds) clouds, night-sky

Time-series anomaly detection à la VERITAS

4

Time-series anomaly detection à la VERITAS

Anomaly detection approach

- Temporal strategy

 - Forecast the expected background distribution
 - \rightarrow construct a TS based on the forecast background \oplus actual data
- Advantage
 - No need for explicit modelling; assumptions on detector response
 - Many systematics factor out, uncertainties reduced
 - Handy for MWL / MMS data fusion & real-time analysis

Sadeh (2020) arxiv:2005.06406

Time-series anomaly detection with RNNs

Sadeh (2020) arxiv:2005.06406

Anomaly detection -> TS calibration

Automated significance-calibration pipeline

- Use the RNN to generate background distributions
- Derive (a hierarchy of successive) TS definitions for a particular analysis
- Derive numerical [TS \rightarrow p-value] mappings

- Evaporation of primordial black holes
 - Many early universe theories predict the creation of PBHs
 - Particles emitted
 → BH mass decreases
 → BH temperature
 increases
 → emitted radiation increases
 - Probes physics of the early universe, e.g., cosmological density fluctuations below the CMB scale • inflation • HEP • connections between gravitation with thermodynamics ...
 - Signature
 → flux increases as mass decreases

Anomaly detection → oversampling

Anomaly detection → shuffling

K. Pfrang 10

Anomaly detection → padding and sliding window

Parameter	Descriptio
$sec(\theta)$	Secant of zenith angle of observation
$ \alpha $	Azimuthal angle observation
$\Delta T_{ m ref}$	Years after reference point 2012.08.
l, b	Galactic coordinat
R_{L3}	L3 trigger ra
dead_time	Fraction of time with busy data acquisition
ped_var	Average pedestal variance for complete ru
$M(E_{total})$	Average multiplicity in total energy rang
$M(E_0), M(E_1), M(E_2)$	Average multiplicity per energy b
ζ	Offset angle relative to center of Fo

Zenith

K. Pfrang 12

Parameter	Descriptio
$sec(\theta)$	Secant of zenith angle of observation
$ \alpha $	Azimuthal angle observation
$\Delta T_{ m ref}$	Years after reference point 2012.08.
l, b	Galactic coordinat
R_{L3}	L3 trigger ra
dead_time	Fraction of time with busy data acquisition
ped_var	Average pedestal variance for complete ru
$M(E_{total})$	Average multiplicity in total energy rang
$M(E_0), M(E_1), M(E_2)$	Average multiplicity per energy b
ζ	Offset angle relative to center of Fo

• Epoch (obs. period)

Parameter	Descriptio
$sec(\theta)$	Secant of zenith angle of observation
$ \alpha $	Azimuthal angle observation
$\Delta T_{ m ref}$	Years after reference point 2012.08.
l, b	Galactic coordinat
R_{L3}	L3 trigger ra
dead_time	Fraction of time with busy data acquisition
ped_var	Average pedestal variance for complete ru
$M(E_{total})$	Average multiplicity in total energy rang
$M(E_0), M(E_1), M(E_2)$	Average multiplicity per energy b
ζ	Offset angle relative to center of Fo

L3 trigger rate

K. Pfrang 14

Parameter	Use	Intra-run	
$sec(\theta)$	 Image: A second s	 Image: A set of the set of the	
$ \alpha $	 Image: A second s	 Image: A second s	Effe
$\Delta T_{ m ref}$	 Image: A second s	 Image: A set of the set of the	
l, b	×	×	
R_{L3}	 Image: A second s	 Image: A set of the set of the	
dead_time	×	 Image: A second s	
ped_var	×	×	
$M(E_{total})$	 Image: A second s	 Image: A second s	
$M(E_0), M(E_1), M(E_2)$	×	 Image: A set of the set of the	
ζ	 Image: A second s	×	

Comments

Propagation length of atmospheric showers ects on lateral shower development by geomagnetic field Long-term degeneration of instrument Observations in the galactic plane are excluded Intra-season changes of the instruments Redundant due to linear correlation to L3 rate Only accessible as average number for run Description of time dependent NSB to replace ped_var Correlation to $M(E_{total})$, limited by low statistic Radial acceptance for different ROIs

er		Time Dependent Auxiliary Parameter	
	X	\rightarrow Constant starting point of observing run	
	1		
	\checkmark		
	1		
	×	ightarrow Mean multiplicity spanning the full observing run	

• Detection efficiency for simulated PBH evaporations within a particular metadata bin of the analysis

d [pc]

- Evaporation of primordial black holes
 - Eligible for evaporation today $\rightarrow \sim 10^{15}$ g
 - γ-ray emission (model dependent) via Hawking radiation
 - Signature -> flux increases as mass decreases

K. Pfrang 18

0

- Data preparation
 - data checks:
 - Trigger rate & calibration devices

 monitor:
 - Rate spikes weather fluctuations background illumination (e.g., moonrise, passing car)
 - Stricter selection criteria for training / calibration, compared to inference (the actual search)

