TB 2022: Simulations & plans

Veta Ghenescu, Alina Neagu, Mihai Potlog Institute of Space Science, Bucharest

TB 2022: Geometry implementation in Geant4

2 case scenario: Anton1 (GaAs) & C74 (Si) sensors

- Simplest geometry
 - Sensor placed in 1st DUT slot
 - 6 telescope planes
 - all distances implemented as in test beam (thanks, Shan!)

goal: check energy deposition

- get energy deposited in each pad of sensor
- reconstruct hit map

■ Ga-As sensor – Anton1

- Rectangular shape
- X dimension: $\mathcal{L} = 4.7 \text{mm} \cdot 15 \text{ (pad)} + 0.3 \text{mm} \cdot 14 \text{(gap)} = 70.5 \text{mm} + 4.2 \text{mm} = 74.7 \text{ mm}$
- Y dimension: $\ell = 4.7 \text{mm} \cdot 10(\text{pad}) + 0.3 \text{mm} \cdot 9(\text{gap}) = 47 \text{mm} + 2.7 \text{mm} = 49.7 \text{mm}$
- Thickness 500 μm

■ Si sensor – C74

- Squared shape: 18 cm x 18 cm
- Separated in 1024 pads
- Thickness: 320 μm

Physics list used: FTFP_BERT & FTFP_BIC

TB 2022: Visualization

Anton₁ sensor

beamOn 100 events

Hit map

pos_y:pos_x

Hits registered position

- Squared shape
- Centered on pads 64, 65, 74, 75, 84, 85

Simulation setup

- Primary particle: electron
- Primary particle energy: 5GeV
- Source type:
 - squared,
 - 12 mm x 12 mm
- Number of simulated events: 1 000 000

pos_y:pos_x

Pad hits

Total energy deposition

Landau lookalike distribution

Hits recorded in pads

- centered on 2 pads in a row
- hits in adjacent pads

Energy deposition

Energy deposition on beam direction pads

■ Edep for 73, 74, 75, 76 pads

| Scene tree : Newer-0 (OpenGLStoredQq | Care | Car

■ Edep for 83, 84, 85, 86 pads

TB 2022: Configurations

• Geometry implementation in Geant4 - 10 experimental setups - 38 different configurations

- Ga-As sensor Anton1
 - 1 exp. setups without any W plates

Energies: 5 GeV c

- Ga-As sensor Yan1
 - 1 exp. setup without W plates

Energies: 5 GeV

1 exp. setup with 5 W plates

Energies: 1 GeV, 3 GeV, 5 GeV

1 exp. setups with decreased no of plates 15 -> 1 W

Energies: 5 GeV

■ Ga-As sensor – BeamCal

1 exp. setups without any W plates

Energies: 5 GeV

- Si sensor C72
 - 1 exp. setups without any W plates

Energies: 5 GeV

Si sensor - C74

1 exp. setups without any W plates

Energies: 5 GeV

1 exp. setup with 5 W plates

Energies: 1 GeV, 3 GeV, 5 GeV

1 exp. setups with decreased no of plates 15 -> 1 W

Energies: 5 GeV

■ Si sensor – C72

1 exp. setups without any W plates

Energies: 5 GeV

TB 2022: Configurations

Geometry implementation in Geant4

General test-beam setup

- 38 different configurations
- expandable for whatever no we want without changing the code
- Easy customizable for future test beam configurations

```
for ((j=0; j < 10; j++))
 do
  #num=$((($i-1)*13+$j))
 num=$(($j*2+$i*10))
 let "runnum = $num"
 echo "/control/verbose 1" > "run setup "$num".mac"
 echo "/run/verbose 1" >> "run setup "$num".mac"
 echo "/event/verbose 0" >> "run setup "$num".mac"
 echo "/tracking/verbose 0" >> "run setup "$num".mac"
 echo "/process/verbose 0" >> "run setup "$num".mac"
 echo "/run/initialize" >> "run setup "$num".mac"
 echo "#set geometry"
 echo "/ecal/detector/setSensorType GaAs" >> "run setup "$num".mac"
 echo "/ecal/detector/setNoSensor 10" >> "run setup "$num".mac"
 echo "/ecal/detector/setNoW 10" >> "run setup "$num".mac"
 echo "/ecal/detector/setNoPads 0" >> "run setup "$num".mac"
 echo "/gps/run/setRunNumber "$runnum >> "run setup "$num".mac"
 echo "/gps/particle e-" >> "run setup "$num".mac"
 echo "/gps/ene/type Mono" >> "run setup "$num".mac"
 echo "/gps/ene/mono 5000 MeV" >> "run setup "$num".mac"
 echo "/gps/pos/type Plane" >> "run setup "$num".mac"
 echo "/gps/pos/shape Rectangle" >> "run setup "$num".mac"
 echo "/gps/pos/halfx 0.6 cm" >> "run setup "$num".mac"
 echo "/gps/pos/halfy 0.6 cm" >> "run setup "$num".mac"
 echo "/gps/pos/centre 0. 0. -327. cm" >> "run setup "$num".mac"
 echo "/gps/direction 0 0 1" >> "run setup "$num".mac"
if [ $j -eq 10 ]
  then
       echo "/run/beamOn 1000000" >> "run setup "$num".mac"
 else
       echo "/run/beamOn 100000" >> "run setup "$num".mac"
 fi
 done
```

.bash script runset setup xxx.mac

creates 10 runset_setup_xxx.sh files

each file starts 10 runs of 100 000 events

macro run setup xxx.mac

creates 10 files with simulations files

allow to customize runs without changing the Geant4 code

TB 2022: Future steps

geometry

- complete implementation of all type of sensors Yan1, BeamCal, C72, C74
- maybe telescope pixels for better tracking
- re-numbering the pads to correspond to ones from real sensors

physics list

- check results with another physics list suggested by Geant4
- start / stop hadronic processes to investigate their influence on results
- implement specific physics list one developed by Alina a few years ago for FCal

analysis

- evaluate each pad energy deposition
- fit the energy deposition histograms to get the MPV
- evaluate MPV for different setup configurations
- compare simulation results with data from test beam
- find the longitudinal shower distribution for different configurations (e.g. 1 to 15 W plates in front of sensor)