

José Alejandro Rubiera Gimeno for the TES team in the ALPS collaboration DPG Spring meeting 2023, 21.03.2023

Leibniz Universität

erc

Axion-like particles (ALPs)

- Pseudo-scalar bosons predicted by Beyond Standard Model Theories.
- Very weak interaction, makes it a good candidate for dark matter.
- The main mechanism for detection is its coupling to photons.

Helioscopes & Haloscopes

Light Shining through a Wall (LSW) (Model independent approach)

Any Light Particle Search II (ALPS II)

DESY. | A TES for ALPS II - Status and Prospects | José A. Rubiera Gimeno, 21.03.2023

Schematic adapted from Katharina-Sophie Isleif.

Any Light Particle Search II (ALPS II)

ALPS II might produce a rate in the order of 1 reconverted photon per day

RECENT UPDATES ON THE ALPS II EXPERIMENT • GULDEN OTHMAN FOR THE ALPS COLLABORATION HETERODYNE DETECTION OF WEAK FIELDS IN ALPS II • ISABELLA OCEANO FOR THE ALPS COLLABORATION

Single photon detector

Requirements:

- Sensibility to very low rates (1-2 photons a day).
- Low energy photon detection (1064 nm equivalent to 1.16 eV).
- High detection efficiency.
- Low background rate: $< 7.7 \cdot 10^{-6}$ cps ~ 1 photon (1064nm like) every 2 days
 - Good energy resolution (resolve 532nm)
- Long term stability (~20 days).

The Transition Edge Sensor (TES) could meet them!

Transition Edge Sensor

K. Irwin, G. Hilton, Transition-edge sensors, in: Cryogenic Particle Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 63–150, http://dx.doi.org/10.1007/10933596_3.

- Connected to a thermal bath
- Working point controlled by a current bias circuit.
- Change in resistance produced by energy deposition.
- Variations measured by Superconducting Quantum Interference Device (SQUID)

A tungsten microchip provided by NIST and PTB ($25 \ \mu m \times 25 \ \mu m \times 20 \ nm$) operated in the transition region (~ 140mK)

1064 *nm* photon (E \approx 1.16 *eV*)

4275

0.1317

Efficiency measurement

A high detection efficiency is required.

- Attenuated laser light.
- Using reference photodiode.
- Single photons reach the TES and are counted. The counts are converted to power and compared with reference. [2]

Setup is done. Further improvement and measurements in progress, expected efficiency around 80% [2].

[2] Setup adapted from Marco Schmidt et al., "Photon-number-resolving transition-edge sensors for the metrology of photonic microstructures based on semiconductor quantum dots," Proc. SPIE 10933, Advances in Photonics of Quantum Computing, Memory, and Communication XII, 1093305 (4 March 2019); https://doi.org/10.1117/12.2514086

Intrinsics background

Intrinsics background (no fiber connected)

The accepted rate of events is in the order of 10^{-2} cps (same trigger as 1064nm data taking).

Evaluating backgrounds in 20 days. ALPS II requirements: $< 7.7 * 10^{-6} cps$, 1064 nm like events

For example:

- Electronic noise
- Cosmic Rays (Muons)
- Radioactivity (Surrounding materials)

[1] Rikhav Shah, Katharina-Sophie Isleif, Friederike Januschek, Axel Lindner and Matthias Schott, "TES Detector for ALPS II", Proceedings of The European Physical Society Conference on High Energy Physics, Volume 398, Page 801, (2022); https://doi.org/10.22323/1.398.0801

Intrinsics background

[1] Rikhav Shah, Katharina-Sophie Isleif, Friederike Januschek, Axel Lindner and Matthias Schott, "TES Detector for ALPS II", Proceedings of The European Physical Society Conference on High Energy Physics, Volume 398, Page 801, (2022); https://doi.org/10.22323/1.398.0801 Use of parameters from fitted 1064 nmpulses, A, τ_{rise} , τ_{decay} , and Pulse integral

Cut-based analysis is able to exclude intrinsics backgrounds and maintain the acceptance for 1064 *nm* pulses

ALPS II requirements: $< 7.7 \cdot 10^{-6} cps$, 1064 nm like events

 $6.9 \cdot 10^{-6} cps$ over 20 days was achieved with acceptance greater than 90% [1]

Extrinsics background

Intrinsics background (no fiber connected)

Extrinsics background (fiber connected)

Expected an additional contribution from laser for cavity locking (532nm) and Black Body Radiation in the form of:

- Direct photons $\rightarrow \sim 1064 nm$
- Pileup photons ----> looks like $\sim 1064 nm$

Working on mitigating by filtering non-1064 nm photons in the cold

Linearity measurement

Measures the response of the TES to photons at different wavelengths.

- The ratios between different wavelengths are determined for the TES and the spectrometer.
- The comparison of the TES results with the spectrometer allows to evaluate its linear behavior.

ALPS II: 532nm \neq 1064nm Blackbody spectrum: λ < 532nm Possible DM search: λ < 1064nm

Good energy resolution is required.

All equipment delivered. Measurements will start very soon.

Towards the understanding of our system

Simulation confirms energy resolution can be explained by the electronic noise.

Outlook

Requirements for ALPS II:

- Sensibility to very low rates (1-2 photons a day).
- Low energy photon detection (1064 nm equivalent to 1.16 eV).
- High detection efficiency.
- Low background rate: $< 7.7 \cdot 10^{-6}$ cps ~ 1 photon (1064nm like) every 2 days \checkmark
 - Good energy resolution \checkmark
- Long term stability (~20 days).
- And also ... first steps on simulating our system studying feasibility of the TES for direct dark matter detection

FURTHER DARK MATTER SEARCHES USING ALPS II'S TES DETECTOR • CHRISTINA SCHWEMMBAUER FOR THE ALPS COLLABORATION

Thank you.

Contact

DESY. Deutsches Elektronen-Synchrotron José Alejandro Rubiera Gimeno ALPS jose.rubiera.gimeno@desy.de

www.desy.de

Backup

Axion-photon coupling

[1] A. V. Sokolov and A. Ringwald, "Photophilic hadronic axion from heavy magneticmonopoles," [arXiv:2104.02574 [hep-ph]].

Fitting procedure

Simulation of electronic noise

160