### Jeremi Niedziela









### In the meantime Visualization & Outreach























### Current work: tt+ALPs



## Current work: tt+ALPs



## Current work: tt+ALPs

U • ALPs: new pseudo-scalars:  $\rightarrow$  Yukawa-like couplings,  $\rightarrow$  preferred interactions with top quarks, • triggering on  $t\bar{t} \rightarrow lower ALP$  masses, • decays loop-induced:  $\rightarrow$  long lived,  $\rightarrow$  easier background rejection,



| u non-resonant                           |
|------------------------------------------|
| = 8 GeV                                  |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
| 100<br>I <sup>µ</sup> <sub>xv</sub> [mm] |







all words





### Is "leptonically" a word?

year









### Is "leptonically" a word?

year





### Is "leptonically" a word?

year













(maybe) my



1.1.1

1

0

....

0

-

.

÷

•

0

• 

144 A

No.

### favorite plot















### SARYON-ANTIBARYON INTERACTIC MS



Source emission function (size and shape of the source)

 $C(k^*) = \int S(\mathbf{r}) \left| \Psi(k^*, \mathbf{r}) \right|^2 d^4 \mathbf{r}$ Correlation function Pair wave function (can be measured) (describes interaction)

14.05.2020





### MEASUREMENT











14.05.2020







Run:244918 Timestamp:2015-11-25 11:25:36(UTC) System: Pb-Pb Energy: 5.02 TeV







and should be a marine see a short sho



CERN








#### ALICE Visualization



### Quantum Nuggets







### Little Bang Theory



### CERNLand games





#### Astronarium

Touching the invisible









Great way to probe Axion-Like Particles (ALPs) coupling to photons.

Direct light-by-light scattering through ALPs.

Just 14 observed events (expected 11 signal + 4 background)  $\rightarrow$  most stringent limits at that time in 5-50 GeV range.



# ALPs in UPC -



### LIGHT-BY-LIGHT SCATTERING

### Elastic photon-photon scattering

- fundamental quantum-mechanical process. Yet, it has remained unobserved until last year...
- the difficulty to observe this process comes from a very low cross-section,
- the loop could also contain new charged particles (SUSY) or new spin-even resonances (axions, monopoles).



### Proposed experiments

- the only similar process experimentally confirmed: Delbrück scattering ( $\gamma$  deflection in the nucleus field),
- Compton backscattered photons agains laser photons,
- photon-photon collisions from microwave waveguides, cavities of high-power lasers,
- photon colliders: scattering laser-light off two e<sup>±</sup> beams,
- ultra-peripheral (electromagnetic) interactions of proton/lead beams at the LHC.



# CMS DETECTOR

- Photons from light-by-light scattering measurable in CMS over  $|\eta| < 2.5$ , exclusivity condition over  $|\eta| < 5.2$ ,
- final state just two tower in the ECAL, no activity in the tracker, hadron calorimeters, muon detectors.

### Electromagnetic Calorimeter

Barrel EB ( $|\eta| < 1.479$ ) End-cap EE (1.479 <  $|\eta|$  < 3.0) ≈76 000 scintillating PbWO4 crystals

### Hadron Calorimeter

Barrel HB ( $|\eta| < 1.3$ ) End-cap HE (1.3 <  $|\eta|$  < 3.0) Brass + Plastic scintillator ≈7000 channels





### BACKGROUND ANALYSIS

### QED e<sup>+</sup>e<sup>-</sup> background

- the same analysis repeated, now requiring exclusive e<sup>+</sup>e<sup>-</sup> pair instead of yy,
- kinematic distributions reproduced well by the Starlight MC generator (except increasing acoptanarity tail from  $\gamma\gamma \rightarrow e^+e^-(\gamma)$ ),
- confirms quality Of:
  - electron/photon reconstruction,
  - event selection criteria,
  - MC predictions for PbPb UPCs,
- estimated e<sup>+</sup>e<sup>-</sup> background after cuts:

1.0 ± 0.3 events.



Jeremi Niedziela

Measured distributions reproduced well by the sum of LbL signal and QED + CEP backgrounds:



### KINEMATIC DISTRIBUTIONS





### Ultraperipheral Heavy-Ion collisions

- passing heavy ions generate huge EM fields (10<sup>14</sup> T),
- cross-section is **amplified** by Z<sup>4</sup>, for PbPb (Z=82)  $\sigma_{\gamma\gamma\rightarrow\gamma\gamma}$  is 5.10<sup>7</sup> higher than for p-p or e<sup>+</sup>e<sup>-</sup>,
- maximum γ energies at LHC 80 GeV (Pb), 2.5 TeV (p),
- W<sup>±</sup> contributions only relevant for  $m_{\gamma\gamma} > 2 \cdot m_W$ , hadronic loops only for  $m_{\gamma\gamma} \leq 2$  GeV,



## LIGHT-BY-LIGHT IN UPCS

### Main backgrounds:

- Exclusive QED e<sup>+</sup>e<sup>-</sup>,
- Central Exclusive Production (CEP).





### DATA SELECTION

### Data sample

- PbPb @ 5.02 TeV (2015:  $L_{int} = 390 \ \mu b^{-1}$ ),
- trigger:  $\geq 2 E/\gamma$  in ECal with  $E_T > 2 GeV$  each,  $\geq 1$  Hadron Forward (HF) empty.
- standard CMS high- $E_T e/\gamma$  reco ( $E_T > 10$  GeV) retuned for this analysis,

#### Exclusivity requirements

- reject events with any towers (above noice threshold) in calorimeters other than the photon candidates,
- reject events with any charged particle with  $p_T > 0.1$  GeV,
- diphoton  $p_{\gamma\gamma} < 1$  GeV to reduce all non-exclusive photon backgrounds.

#### Results

- observed 14 events in the signal region,
- expected:  $11.1 \pm 1.1$  (th) signal and  $4.0 \pm 1.2$  (stat) background events,
- **significance** observed:  $4.1\sigma$  (expected:  $4.4\sigma$ )
- fiducial cross section measured:  $120 \pm 46$  (stat)  $\pm 28$  (syst)  $\pm 4$  (th) nb (expected:  $138 \pm 14$  nb).





# AXION-LIKE PARTICLES

- Exclusive  $\gamma\gamma \rightarrow \gamma\gamma$  is also sensitive to physics signals beyond the SM such as axions,
- Axion-Like Particles (ALPs): more general class of elementary pseudo-scalar particles, where mass-coupling relation is not fixed,
- no significant ALP excess observed in data above LbL+backgrounds continuum,
- limits in cross-section  $\rightarrow$  limits in  $g_{a\gamma}$  vs.  $m_a$  plane ( $g_{a\gamma} = 1/\Lambda$ ),
- new limits on axion-like particles over  $m_a = 5-50$  GeV.



PLB: Proceedings: New Physics in HI: Ongoing analysis:

inspirehep.net/record/1697838 inspirehep.net/record/1731403 inspirehep.net/record/1709994 CMS AN-18-254

14.05.2020







# HGCal cells clustering



![](_page_49_Picture_3.jpeg)

# HGCAL 2D CLUSTERING

### New calorimeter end-caps in Phase-2

- hexagonal silicon cells + plastic scintillator,  $\approx$ **50 layers**,
- for the first time we'll have a **tracking calorimeter**!
- reconstruction more challenging than in regular calorimeter,

![](_page_50_Figure_5.jpeg)

• problem: find the best values of parameters to reconstruct cluster energy as close as possible to the true one.

![](_page_50_Picture_12.jpeg)

#### Layer clustering

• layer-by-layer clustering is a first step or the "classical" reconstruction. clustering algorithm exists and has O(10) free parameters,

![](_page_50_Picture_17.jpeg)

### IMIZING CLUSTERING PARAMETERS

### Genetic algorithms (GA)

- GA is similar to how the evolution works. Optimization problem is stated in the language of natural selection,
- the basic unit is the chromosome, which encodes part of a single solution (good or bad) to the problem,
- one single solution, containing all parameters, is called a creature and contains a few chromosomes.

### Chromosome

![](_page_51_Figure_6.jpeg)

#### Creature

![](_page_51_Picture_10.jpeg)

![](_page_51_Picture_13.jpeg)

### Step one

### randomly draw an initial population

- create N<sub>c</sub> random creatures,
- some solutions will be completely wrong,
- some of them, just by chance, will be a bit better.

### Step two

### test all creatures (check their fitness)

- calculate score using the some formula,
- normalize the score and assign to creatures.

# 0.5

0.3

![](_page_52_Picture_11.jpeg)

### Step three selection

- select N<sub>c</sub>/2 pairs of creatures, according to their fitness,
- creatures with high score will be selected many times,
- those with low score may never get selected (they will die...).

### GENETIC ALGORITHMS

### Step four

#### crossover

- cross chromosomes in each selected pair,
- there are many ways of doing that (single point, many points, uniform...).

![](_page_52_Picture_22.jpeg)

### Step five

#### mutation

 randomly flip bits in child chromosome (with a very small probability).

100010010010110001001**1**1001010001010

100010010010110001001**0**10010100010101

At this point, we have a new population (2nd generation), that should in general be a bit better adapted.

![](_page_52_Figure_31.jpeg)

![](_page_52_Figure_32.jpeg)

![](_page_52_Figure_33.jpeg)

![](_page_52_Figure_34.jpeg)

### HGCAL OPTIMIZATION - RESULTS

We repeat this process until our solutions don't get much better with each iteration

![](_page_53_Figure_2.jpeg)

#### resolution

![](_page_53_Figure_5.jpeg)

42

![](_page_53_Picture_8.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_55_Picture_0.jpeg)

# Disappearing Tracks

![](_page_55_Figure_2.jpeg)

![](_page_55_Figure_3.jpeg)

Boss: give it a go!

# SHORT DISAPPEARING TRACKS

We are interested in theoretical models which give a signature of a **short disappearing track**, such as SUSY with small mass splitting.

![](_page_56_Figure_2.jpeg)

SUSY wino scenario (max LSP mass  $\approx$  3 TeV,  $\Delta m \approx$  166 MeV)  $\tilde{H}_{u,d} \rightarrow \tilde{\chi}_{3,4}^0 / \tilde{\chi}_2^{\pm}$  $\tilde{B} \rightarrow \tilde{\chi}_2^0$  $\tilde{W} \rightarrow \tilde{\chi}_1^0 / \tilde{\chi}_1^{\pm}$ 

SUSY higgsino scenario (max LSP mass  $\approx 1.1$  TeV,  $\Delta m \approx 355$  MeV)  $\tilde{W} \rightarrow \tilde{\chi}_4^0 / \tilde{\chi}_2^{\pm}$  $\tilde{B} \rightarrow \tilde{\chi}_3^0$  $\tilde{H}_{u,d} \rightarrow \tilde{\chi}_{1,2}^0 / \tilde{\chi}_1^{\pm}$ 

![](_page_56_Figure_6.jpeg)

![](_page_56_Picture_9.jpeg)

### ECTED SIGNATURE

### Signature

- a short, isolated track:
  - "disappearing" after passing <10 layers of the tracker,</li>
  - with relatively large energy deposit in the silicon detectors,
- high **MET** (missing transverse energy) in the track's direction,
- one or more **jets** (against which the chargino recoils),
- a very **soft pion** coming from the chargino decay vertex ( $\approx 200$  MeV).

![](_page_57_Figure_8.jpeg)

![](_page_57_Figure_10.jpeg)

![](_page_57_Picture_13.jpeg)

### JRRENT STATE OF THE ART

![](_page_58_Figure_1.jpeg)

1.02.2019

#### Current disappearing track analyses

- **CMS result** (EXO-16-044) requires  $\geq$  7 hits in the tracker,
- **ATLAS result** (1712.02188) went down to 4 layers (thanks to the IBL),
- **EXO-19-010** (in CWR) with full Run 2 data, 4 layers.  $\bullet$

### This analysis

- focus on lifetimes below 1 ns ( $c\tau < 30$  cm),
- reduce the N<sub>hits</sub> requirement, even below 4 hits,
- include **two-track** scenario,
- use the dE/dx in pixel and strips,
- exploit the **helix trajectory** of the pion.

![](_page_58_Picture_15.jpeg)

![](_page_59_Figure_2.jpeg)

Uniform  $\Delta \phi$  distribution

![](_page_59_Picture_4.jpeg)

### ER PROBABILITY

### How low the momentum has to be, depending on where did the chargino decay and what was the $\Delta \phi(\chi, \pi)$ , to get a looper?

![](_page_59_Picture_10.jpeg)

### IMPOSSIBLE/CHALLENGING CASES

![](_page_60_Figure_1.jpeg)

Sometimes, configuration of hits is such that it becomes practically **impossible** to reconstruct any track:

- A. no hits,
- B. chargino not reconstructed,
- C. hits heavily scattered,
- D. very low  $p_z$  (multiple solutions).

![](_page_60_Figure_10.jpeg)

![](_page_60_Picture_11.jpeg)

![](_page_61_Figure_0.jpeg)

![](_page_61_Picture_1.jpeg)

### Results

Then, one can start with an easy case, with only pion clusters.

Fit MC (almost) truth

![](_page_61_Picture_8.jpeg)

### )OPER TAGGING

Reconstruction of the soft pion coming from the chargino decay vertex would be very **challenging**, but could be worth it!

![](_page_62_Figure_2.jpeg)

### Challenges

- soft pion can stop quickly in the material,
- large momentum loss heavily shrinking helix,
- tracker-only, no matching with calorimeters,
- high number of background ("noise") hits,
- chargino mis-reconstruction (Nlayers, charge).

• multiple scattering (not well determined hit location in next layer),

#### Positives

- approximate decay vertex location (along chargino's track),
- distributions of (from MC):
  - initial and final helix radius,
  - initial momentum,
  - next-hit location,
- charge of the pion (from chargino's charge).

![](_page_62_Picture_21.jpeg)

![](_page_62_Picture_22.jpeg)

### DEDICATED RECONSTRUCTION

- a dedicated algorithm was developed,
- written in a way allowing for high level of **customization** using a large number of parameters, optimized based on:
  - tracker geometry and event topology,
  - MC distributions,
  - iteratively reconstructing events and maximizing significance boost,
  - with a genetic algorithm.

![](_page_63_Figure_7.jpeg)

14.05.2020

- introducing special features for low-momentum, displaced track reconstruction:
  - secondary vertex along a track, rather than in a box,
  - asymmetric (tilting) next hit search windows,
  - charge can be deduced from chargino's track
  - next hit can be located in the next or previous layer (turning back),

. . .

![](_page_63_Picture_19.jpeg)

### LOOPER RECONSTRUCTION - RESULTS

![](_page_64_Picture_1.jpeg)

Fitted track

14.05.2020

![](_page_64_Picture_4.jpeg)

![](_page_64_Picture_5.jpeg)

### ALP searches at the LHC

- huge mass range: 0.2 to 1600 GeV,
- various final states and production mechanisms, probing various ALP couplings,
- but no searches so far aiming at ALP-top coupling!

#### This study

- directly probing previously unexplored top-ALP coupling  $\rightarrow$  well theoretically motivated,
- interesting, uncovered signature ( $t\bar{t}$  + displaced dimuon), with improved sensitivity thanks to  $t\bar{t}$  requirement.

![](_page_65_Figure_8.jpeg)

![](_page_65_Picture_9.jpeg)

15-30 GeV ATLAS, PRD 102.112006, H decays

16-62 GeV ATLAS, <u>CONF-2021-009</u>, H decays

20-62 GeV CMS, PLB 2019.06.021, H decays

b coupling µ coupling τ coupling γ coupling q coupling

t coupling

350-1600 GeV CMS+TOTEM, EXO-18-014

\* very much not to scale! ► ma (GeV)

![](_page_65_Picture_23.jpeg)

![](_page_65_Picture_25.jpeg)

![](_page_66_Picture_0.jpeg)

![](_page_66_Picture_1.jpeg)

### ttµµ

Z boson produced in association with  $t\bar{t}$  pair and decaying to µ+µ-

![](_page_66_Picture_4.jpeg)

# tt+ALPs

# tt+ALPs

### Suppressing known resonances

Muons coming from decays of known resonances suppressed by explicit  $m_{\mu\mu}$  cuts:

- considering  $\rho$ ,  $\omega$ ,  $\phi$ , J/ $\Psi$ ,  $\Psi$ (2S) mesons,
- cutting at  $m_R \pm 5\% \cdot m_R$ .

![](_page_67_Figure_5.jpeg)

![](_page_67_Figure_6.jpeg)

### Exploiting p<sub>T</sub> spectrum

Signal muon transverse momentum ( $p_T$ ) tends to be **much harder** than for the backgrounds

→ applying  $p_T^{\mu} > 10$  GeV selection.

![](_page_68_Figure_0.jpeg)

### Picking muons from the same vertex

• we're using the following variable:

$$R_{l_{xy}} = \sqrt{\frac{(x^{\mu} - x^{\bar{\mu}})^2 + (y^{\mu} - y^{\bar{\mu}})^2}{(|x^{\mu}| + |x^{\bar{\mu}}|)^2 + (|y^{\mu}| + |y^{\bar{\mu}}|)^2}}$$

- sensitive to the difference in muons' origins (x, y),
- largely independent from detector resolution,
- selection: ullet
  - pick the pair with the smallest R<sub>Ixy</sub>,
  - keep events with  $R_{Ixy} < 0.05$ (conservative estimate, should be able to do better than that).

# 

![](_page_68_Figure_10.jpeg)

# tt+ALPs

derive limits

### Events categorization in transverse displacement

- bin surviving events in secondary vertex displacement I<sub>xy</sub>
  → further increase sensitivity to displaced signatures,
- bins based on an existing CMS analysis (EXO-20-014, 2112.13769), driven by beam pipe and tracker layers location.

![](_page_69_Figure_4.jpeg)

![](_page_69_Figure_5.jpeg)

### ELECTIONS SUMMARY

### Preselection

ALPs:

•  $p_T^a > 20 \text{ GeV},$ 

Jets:

- $p_T^j > 20 \text{ GeV},$
- $|\eta_j| < 3.0$ ,

Muons:

- $p_T^{\mu} > 5$  GeV,
- |η<sub>µ</sub>| < 2.5,</li>
- veto muons coming from top decays,
- at least one pair of **opposite-sign** muons in event.

### Expected number of events for 150 fb<sup>-1</sup>

50

|                          | signals ( $c_{tt} = 1.0$ ) |      |         |       |      |       |         |      |       |       |      |      | backgrounds |       |       |      |      |  |
|--------------------------|----------------------------|------|---------|-------|------|-------|---------|------|-------|-------|------|------|-------------|-------|-------|------|------|--|
| selection                | 0.3 GeV                    |      | 0.5 GeV |       |      | 2 GeV |         |      | 8 GeV |       |      | tīj  |             |       | ttµp  |      |      |  |
| Preselection             | 16480 -                    |      | ± 18    | 15505 |      | ± 17  | 15066 ± |      | ± 16  | 14966 |      | ± 16 | 41308       |       | ± 442 | 2565 | 2565 |  |
| p⊤ <sup>µ</sup> > 10 GeV | 14770                      | ± 16 | 90%     | 12425 | ± 15 | 80%   | 12179   | ± 15 | 81%   | 12128 | ± 15 | 81%  | 6048        | ± 169 | 15%   | 2328 | ± -  |  |
| Dimuon mass selection    | 14770                      | ± 16 | 100%    | 12424 | ± 15 | 100%  | 12178   | ± 15 | 100%  | 12127 | ± 15 | 100% | 5135        | ± 156 | 85%   | 575  | ± (  |  |
| $R_{lxy} < 0.05$         | 14769                      | ± 16 | 100%    | 12422 | ± 15 | 100%  | 12176   | ± 15 | 100%  | 12125 | ± 15 | 100% | 558         | ± 51  | 11%   | 0    | ± (  |  |

![](_page_70_Figure_15.jpeg)

### Further background suppression

- known resonances: explicit mass cuts,
- exploit  $p_T$  spectrum:  $p_T^{\mu} > 10$  GeV,
- muons coming from the same vertex:  $R_{Ixy} < 0.05$ .

### Selections summary

- **signal efficiency** close to 100%,
- $\mathbf{p}_{T}$  and  $\mathbf{R}_{Ixy}$  nicely suppresses  $t\bar{t}j$  background,
- mass and  $R_{Ixy}$  requirements kill t $\bar{t}\mu\bar{\mu}$  background.

![](_page_70_Figure_25.jpeg)

### Top scenario of the ALP model

- a new (pseudo-)scalar is expected to have Yukawa-like couplings to SM fermions,
- if that is the case, it would couple predominantly to top quark (light quark coupling suppressed by small masses),
- for simplicity, we assume **only top couplings**,
- overall, just **2 free parameters** in the model:
- ▶ m<sub>a</sub> ALP mass, 10<sup>27</sup> ctt - top-ALP coupling, • ALP decays: 10<sup>21</sup> loop induced (decay width determined by ctt), ALPs likely to be long lived, **10**<sup>15</sup> *c*τ<sub>a</sub> [cm] • for  $2 \cdot m_{\mu} < m_a < 3 \cdot m_{\pi}$  predominantly to muons.

### ALPS MODEL - TOP SCENARIO

![](_page_71_Figure_10.jpeg)

![](_page_71_Picture_13.jpeg)
