Searching for U(2) New Physics with Flavour, Electroweak, and Collider Data

Lukas Allwicher

Physik-Institut, Universität Zürich

DESY theory workshop 2023 26 - 29 September 2023 DESY, Hamburg

Based on work (in progress) with: C. Cornella, G. Isidori, and B. Stefanek

The Standard Model flavour puzzle

• SM gauge interactions are flavour-blind:

$$\mathcal{L}_{ ext{gauge}} \supset \sum_{i=1}^{3} \sum_{\psi} ar{\psi} i D \!\!\!/ \psi$$

• flavour symmetry:

$$U(3)^5 = U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_e$$

• only breaking: Higgs Yukawa interactions:

$$\mathcal{L}_{\text{Yukawa}} = Y_u \bar{q} u \widetilde{H} + Y_d \bar{q} dH + Y_e \bar{\ell} eH + \text{h.c.}$$

The pattern of masses and mixings doesn't look accidental at all!

$$m_{\psi} \sim \left(\begin{array}{c} & & \\$$

Light new physics: the NP flavour problem

• hierarchy problem: Higgs mass term quadratically sensitive to UV physics:

$$h \cdots \underbrace{\bigoplus_{\bar{t}}}_{\bar{t}} \cdots h \longrightarrow \delta m_h^2 \approx \frac{3y_t^2}{4\pi^2} \Lambda_{\rm NP}^2$$

 \Rightarrow need "light" NP to avoid tuning

• Stringent flavour bounds: what is the flavour structure of NP?

 \rightarrow Non-trivial if we want TeV-scale

NP flavour problem

Flavour symmetries: the U(2) paradigm

• Yukawa terms break the $U(3)^5$ symmetry:

$$U(3)^5 \xrightarrow{\mathcal{L}_{\text{Yukawa}}} U(1)_B \times U(1)_L$$

- However, light family Yukawas very small: approximate $U(2)^5$ symmetry

[Barbieri, Isidori, Lodone, Straub 1105.2296]

$$Y \simeq y_3 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad U(2)^5 = U(2)_q \times U(2)_\ell \times U(2)_u \times U(2)_d \times U(2)_e$$

Minimal breaking:

$$Y = y_3 \left(\begin{array}{c} \Delta & V \\ 0 & 1 \end{array} \right) \qquad |V_q| = \epsilon_q = \mathcal{O}(y_t V_{ts}) \quad |\Delta| \sim y_{c,s,\mu}$$

- idea: treat the SM as an effective description, with accidental flavour symmetries of UV origin
- does NP follow a similar structure?

Third generation New Physics and U(2)

- NP is not flavour universal
- mainly coupled to the 3rd generation
- coupling to light generations dynamically suppressed \rightarrow avoid flavour and collider constraints
- mimicks the SM Yukawa sector \leftrightarrow SM flavour puzzle
- approximate U(2) symmetry
- construct invariants from bilinears:

exact U(2)

minimally broken U(2)

$$\bar{q}_L^3 \gamma_\mu q_L^3 + \epsilon \bar{q}_L^i \gamma_\mu q_L^i$$

$$\bar{q}_L^i V_q^i \gamma_\mu q^3 \qquad V_q \sim \mathcal{O}\begin{pmatrix} V_{td} \\ V_{ts} \end{pmatrix}$$

flavour violating couplings

Want to study this hypothesis in a generic EFT approach

SMEFT and U(2)

Consider the Standard Model as an Effective Field Theory

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + rac{1}{\Lambda^2} \sum_i \mathcal{C}_i \mathcal{O}_i^{(6)} + \cdots$$

- 2499 independent parameters at d = 6
- exact U(2): 124 CPC + 23 CPV

	[Faroughy, Isidori, Wilsch, Yamamoto 2005									2005.05366]				
	$U(2)^5$ [terms summed up to different orders]													
Operators	Exact		$O(V^1)$		$O(V^2)$		$\mathcal{O}(V^1, \Delta^1)$		$\mathcal{O}(V^2, \Delta^1)$		$O(V^2, \Delta^1 V^1)$		$O(V^3, \Delta^1 V^1)$	
Class 1–4	9	6	9	6	9	6	9	6	9	6	9	6	9	6
$\psi^2 H^3$	3	3	6	6	6	6	9	9	9	9	12	12	12	12
$\psi^2 X H$	8	8	16	16	16	16	24	24	24	24	32	32	32	32
$\psi^2 H^2 D$	15	1	19	5	23	5	19	5	23	5	28	10	28	10
$(\bar{L}L)(\bar{L}L)$	23	-	40	17	67	24	40	17	67	24	67	24	74	31
$(\bar{R}R)(\bar{R}R)$	29	-	29	-	29	-	29	-	29	-	53	24	53	24
$(\bar{L}L)(\bar{R}R)$	32	-	48	16	64	16	53	21	69	21	90	42	90	42
$(\bar{L}R)(\bar{R}L)$	1	1	3	3	4	4	5	5	6	6	10	10	10	10
$(\bar{L}R)(\bar{L}R)$	4	4	12	12	16	16	24	24	28	28	48	48	48	48
total:	124	23	182	81	234	93	212	111	264	123	349	208	356	215

Table 6: Number of independent operators in the SMEFT assuming a minimally broken $U(2)^5$ symmetry, including breaking terms up to $\mathcal{O}(V^3, \Delta^1 V^1)$. Notations as in Table 1.

How low can the NP scale be?

• consider collider, electroweak and flavour observables

Phenomenology: colliders

 ℓ_{α}

• High- p_T Drell-Yan Tails

 $\bar{\ell}_{\beta}$

 ℓ_{α}

 $\bar{\ell}_{\beta}$

- In particular. $pp \rightarrow 77, 7\nu$ [LA, Faroughy, Jaffredo, Sumensari, Wilsch 2207.10756] - Constrain semileptonic operators

- LEP-2 $e^+e^- \rightarrow \ell^+\ell^-$
 - $e^+e^- \rightarrow e^+e^-$ angular distributions
 - $e^+e^- \rightarrow \mu^+\mu^-, \tau^+\tau^-: \sigma, \sigma_{\rm FB}$
 - Constrain four-lepton operators
- four-quark observables
 - $t\bar{t}, b\bar{b}, b\bar{t}$ final states
 - Constrain e.g. $\mathcal{C}_{qu}^{(1)}, \mathcal{C}_{uG}, \dots$

[Allanach, Mullin 2306.80669]

[Ethier et al. 2105.00006]

Phenomenology: EWPT

- Crucial precision tests of the SM & NP coupled to the Higgs
- At tree-level, constrain operators of the type $(H^{\dagger}iD_{\mu}H)(\bar{\psi}\gamma^{\mu}\psi)$ \rightarrow modification of SM gauge boson couplings
 - \rightarrow Only 15 such structures in the U(2) limit
- RGE effects can be important! At one-loop:

Contribution to:

- $(H^{\dagger}iD_{\mu}H)(\bar{\ell}\gamma^{\mu}\ell)$
- $Z \rightarrow \tau \tau$
- Sometimes even NLL effects \rightarrow need for full resummation

Contribution to:

- $|H^{\dagger}D_{\mu}H|^2$
- m_W

[LA, Isidori, Lizana, Selimović, Stefanek 2302.11584]

- Potential for great improvement at FCC-ee!
- Include also Higgs decays, τ LFU tests

Phenomenology: Flavour

- In principle, no flavour-violating couplings in the exact U(2) limit
- but, need to specify a basis for the quark doublets
- Two choices:

$$\begin{array}{ll} \mbox{down-aligned} & \mbox{up-aligned} \\ q_L^{\mbox{down}} = \begin{pmatrix} V_{\rm CKM}^{\dagger} u_L \\ d_L \end{pmatrix} & q_L^{\rm up} = \begin{pmatrix} u_L \\ V_{\rm CKM} d_L \end{pmatrix} \end{array}$$

- main effects in the U(2) hypothesis:
 - $\Delta F = 1: B \to X_s \gamma, B \to K \nu \bar{\nu}, K \to \pi \nu \bar{\nu}, B \to K \mu \mu, \dots$
 - $\Delta F = 2$: $B_{s,d}$ -, K-, D-mixing
 - $b \rightarrow c \tau \nu$ transitions: $R_{D^{(*)}}, R_{\Lambda_c}$

[Fuentes-Martín, Ruiz-Femenia, Vicente, Virto 2010.16341]

- Take into account RGE effects by running up the Wilson coefficients entering the observables up to $\Lambda = 3$ TeV \rightarrow approximate full resummation using DsixTools
- Impose exact U(2) at the high scale
- Distinguish two cases for flavour-violating couplings:
 - U(2) basis up-aligned
 - U(2) basis down-aligned
- Construct the combined likelihood from collider, EW, and flavour observables as a function of the 124 CP conserving invariants
- Switch on one operator at a time
 - \rightarrow get lower bound on $\Lambda_{\rm NP}$ (quote everything at 3σ)

Current bounds from EWPT

- EW already dominates 42 out of 124 bounds
- $\Lambda\gtrsim 1$ TeV, up to 10 TeV

EWPT - FCC projections

- 2×10^5 more Z bosons than LEP
- EWPT improved by 10-100 (systematics)
- now: 82/124 bounds dominated by EW
- $\Lambda\gtrsim 10~{\rm TeV}$ for the same operators

New Physics coupled to light families

- [LA, Cornella, Isidori, Stefanek WIP]
- suppress loop-generated operators: dipoles, $(H^{\dagger}\sigma^{I}H)W^{I}_{\mu\nu}B^{\mu\nu}$, ...
- $\mathcal{O}(5-10)$ TeV bounds
- Can we go below $\Lambda = 1.5$ TeV? 3rd gen. New Physics?

Third family New Physics

[LA, Cornella, Isidori, Stefanek WIP]

- ϵ_Q for each light quark field
- ϵ_L for each light lepton field
- Avoid collider constraints

down 📕 up 📑 EW 📑 collider

Third family NP: Higgs couplings

- suppress Higgs couplings: ϵ_H for each higgs field
- Avoid EW constraints

Third family NP: flavour alignment

[LA, Cornella, Isidori, Stefanek WIP]

- 15% down-alignment does the trick

- alternatively: suppress four-quark couplings (Leptoquarks?)

flavor 📑 EW 🗖 collider

FCC projections

Summary

- The SM flavour sector exhibits an approximate $U(2)^5$ symmetry
- U(2) is a good starting point to address also the NP flavour problem
- Studied the SMEFT in the exact U(2) limit, considering constraints from collider, electroweak and flavour observables
- Find generally bounds of $\mathcal{O}(5-10)$ TeV \rightarrow mainly from light families
- All bounds can be relaxed to be below $\Lambda = 1.5$ TeV assuming 3^{rd} generation NP (and small Higgs couplings)
- Exciting prospects for FCC-ee, pushing the bounds back into the $\mathcal{O}(10)$ TeV range, independently of dynamical assumptions
- Great importance of EWPT, due also to RGE effects

Thanks for your attention!