

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Juhi Dutta, Jayita Lahiri, Cheng Li, Gudrid Moortgat-Pick, Sheikh Farah Tabira, ·Julia Ziegler

Dark Matter Phenomenology in Z'₂ broken Two Higgs Doublet Model with Complex Singlet Extension

Extend SM → Two Higgs Doublet Model with Complex Singlet (2HDMS)

2HDMS Higgs Sector Potential

[Notation as in: Baum and Shah, arXiv: 1808.02667]

$$V = V_{2HDM} + V_{S}$$

$$V_{2HDM} = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - [m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + h.c.] + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \left[\frac{\lambda_{5}}{2} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c. \right]$$

$$For this study:$$

$$V_{S} = m_{S}^{2} S^{\dagger} S + \left[\frac{m_{S}'^{2}}{2} S^{2} + h.c. \right]$$

$$For this study:$$

$$\lambda_{2}'' = \lambda_{1}'' + \left[\frac{\lambda_{11}''}{24} S^{4} + h.c. \right] + \left[\frac{\lambda_{22}''}{6} (S^{2} S^{\dagger} S) + h.c. \right] + \frac{\lambda_{3}''}{4} (S^{\dagger} S)^{2} + S^{\dagger} S [\lambda_{1}' \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{2}' \Phi_{2}^{\dagger} \Phi_{2}] + [S^{2} (\lambda_{4}' \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{5}' \Phi_{2}^{\dagger} \Phi_{2}) + h.c.]$$

$$\Phi_{i} = \begin{pmatrix} \phi_{i}^{+} \\ \frac{1}{\sqrt{2}}(v_{i} + \rho_{i} + i\eta_{i}) \end{pmatrix} \qquad \langle \Phi_{i} \rangle = \begin{pmatrix} 0 \\ \frac{v_{i}}{\sqrt{2}} \end{pmatrix}$$
$$S = \frac{1}{\sqrt{2}}(v_{S} + \rho_{S} + iA_{S}) \qquad \langle S \rangle = \frac{v_{S}}{\sqrt{2}}$$

DM Candidate

DM Candidate Properties:

- massive
- electrically neutral
- colourless
- stable

2HDMS Higgs Sector Potential [Notation as in: Baum and Shah, arXiv: 1808.02667]

$$V = V_{2HDM} + V_{S}$$

$$V_{2HDM} = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - [m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + h.c.] + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \left[\frac{\lambda_{5}}{2} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c. \right]$$

$$For this study:$$

$$V_{S} = m_{S}^{2} S^{\dagger} S + \left[\frac{m_{S}'^{2}}{2} S^{2} + h.c. \right]$$

$$For this study:$$

$$V_{S} = m_{S}^{2} S^{\dagger} S + \left[\frac{m_{S}'^{2}}{2} S^{2} + h.c. \right]$$

$$F(\frac{\lambda_{1}''}{24} S^{4} + h.c.) + \left[\frac{\lambda_{2}''}{6} S^{2} S^{\dagger} S \right] + h.c. + \frac{\lambda_{3}''}{4} (S^{\dagger} S)^{2} + S^{\dagger} S [\lambda_{1}' \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{2}' \Phi_{2}^{\dagger} \Phi_{2}] + [S^{2} (\lambda_{4}' \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{5}' \Phi_{2}^{\dagger} \Phi_{2}) + h.c.]$$

V _{2HDMS} Symmetri	V _{2HDMS} Symmetric Under								
$\Phi_j \stackrel{U(1)}{ ightarrow} e^{i heta} \Phi_j$	avoids charge- parity violation								
$\Phi_j^\dagger \stackrel{U(1)}{ ightarrow} e^{-i heta} \Phi_j^\dagger$									
$\Phi_1 \xrightarrow{Z_2} - \Phi_1$	avoids flavour changing neutral								
$\Phi_2 \xrightarrow{Z_2} \Phi_2$	currents								
(softly broken by m ₁₂ ²)									
$\Phi_j \stackrel{Z'_2}{\to} \Phi_j$	stabilization of DM								
$S \xrightarrow{Z'_2} -S$									

2HDMS Higgs Sector Potential [Notation as in: Baum and Shah, arXiv: 1808.02667]

$$V = V_{2HDM} + V_{S}$$

$$V_{2HDM} = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - [m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + h.c.] + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2}$$

$$+ \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1})$$

$$+ \left[\frac{\lambda_{5}}{2} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c. \right]$$
for this study:
$$\lambda_{s} = m_{S}^{2} S^{\dagger} S + \left[\frac{m_{S}'^{2}}{2} S^{2} + h.c. \right]$$

$$+ \left[\frac{\lambda_{11}''}{24} S^{4} + h.c. \right] + \left[\frac{\lambda_{22}''}{6} (S^{2} S^{\dagger} S) + h.c. \right] + \frac{\lambda_{33}''}{4} (S^{\dagger} S)^{2}$$

$$+ S^{\dagger} S [\lambda_{1}' \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{2}' \Phi_{2}^{\dagger} \Phi_{2}] + [S^{2} (\lambda_{4}' \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{5}' \Phi_{2}^{\dagger} \Phi_{2}) + h.c.]$$

Other Prope	Other Properties						
number of free parameters:	15						
DM mass:	$\begin{split} m_{A_{S}}^{2} &= \frac{\partial^{2} V}{\partial A_{S}^{\dagger} \partial A_{S}} _{\Phi_{1} = \langle \Phi_{1} \rangle} _{\Phi_{2} = \langle \Phi_{2} \rangle. S = \langle S \rangle} \\ &= -(2m_{S}^{\prime 2} + v_{S}^{2}(\frac{\lambda_{1}^{\prime \prime}}{3} + \frac{\lambda_{1}^{\prime \prime}}{3}) + 2(\lambda_{4}^{\prime} v_{1}^{2} + \lambda_{5}^{\prime} v_{2}^{2})) \end{split}$						
Higgs sector particles:	1 charged: H_{\pm} , 1 charged GB: G_{\pm} , SM-like 3 scalars: h_1 , h_2 , h_3 , 1 pseudo scalar: A, 1 pseudo scalar GB: G_0 , 1 pseudo scalar DM: A_s						
portal couplings:	$\lambda_1', \lambda_2', \lambda_4', \lambda_5', \lambda_1'' = \lambda_2'', \lambda_3''$						

2HDMS Couplings: DM to Scalar

$$A_{S} \qquad h_{j} \qquad \lambda_{h_{j}h_{k}A_{S}A_{S}} = \frac{\partial^{4}V}{\partial h_{j}\partial h_{k}\partial A_{S}\partial A_{S}} = -i[(\lambda_{1}' - 2\lambda_{4}')R_{j1}R_{k1} + (\lambda_{2}' - 2\lambda_{5}')R_{j2}R_{k2} - \frac{1}{2}(\lambda_{1}'' - \lambda_{3}'')R_{j3}R_{k3}]$$

$$A_{S}$$

$$\frac{\lambda_{h_{j}A_{S}A_{S}}}{k_{j}} = \frac{1}{v} \frac{\partial^{3}V}{\partial h_{j}\partial A_{S}\partial A_{S}}$$

$$= -i[(\lambda_{1}' - 2\lambda_{4}')c_{\beta}R_{j1} + (\lambda_{2}' - 2\lambda_{5}')s_{\beta}R_{j2} - \frac{v_{S}}{2v}(\lambda_{1}'' - \lambda_{3}'')R_{j3}]$$

2HDMS Basis Change

Interaction Basis Parameters:

$$\begin{split} \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, m_{12}^2, \tan\beta, v_S, m_S^{2\prime}, \\ \lambda_1', \lambda_2', \lambda_4', \lambda_5', \lambda_1'' = \lambda_2'', \lambda_3'' \end{split}$$

Mass Basis Parameters:

 $m_{h_1}, m_{h_2}, m_{h_3}, m_A, m_{A_S}, m_{H^{\pm}}, \delta'_{14}, \delta'_{25},$ $\tan\beta, v_S, c_{h_1bb}, c_{h_1tt}, \tilde{\mu}^2, m'_S, alignm$

2HDMS Benchmark Point (BP)

m_{h_1}	<i>m</i> _{<i>h</i>₂}	m _{h3}	m _A	m _{As}	m _{H[±]}	δ_{14}'	δ'_{25}
95 GeV	125.09 GeV	900 GeV	900 GeV	325.86 GeV	900 GeV	-9.6958	0.2475
$tan(\beta)$	VS	C _{h1bb}	C _{h1tt}	$ ilde{\mu}^2$	$m_S^{\prime 2}$	alignm	
10	239.86 GeV	0.2096	0.4192	$8.128 \times 10^5 \text{ GeV}^2$	$-4.809 \times 10^4 \text{GeV}^2$	0.9998	X

*yy channel at CMS (~2.9 σ), bb channel at LEP (~2 σ), investigated in S. Heinemeyer, C. Li, et al, 2021, arxiv:2112.11958

Extend SM → Two Higgs Doublet Model with Complex Singlet (2HDMS)

DM Phenomenology

DM Phenomenology

m_{h_1}	m_{h_2}	m _{h3}	m _A	m _{As}	$m_{H^{\pm}}$	δ'_{14}	δ'_{25}
95 GeV	125.09 GeV	900 GeV	900 GeV	325.86 GeV 900 GeV -		-9.6958	0.2475
$tan(\beta)$	VS	C _{h1bb}	C _{h1tt}	$ ilde{\mu}^2$	$\tilde{\mu}^2$ $m_S^{\prime 2}$		
10	239.86 GeV	0.2096	0.4192	$8.128 \times 10^5 \text{ GeV}^2$	$-4.809 \times 10^4 \text{GeV}^2$	0.9998	

DM Phenomenology

m_{h_1}	<i>m</i> _{<i>h</i>₂}	m _{h3}	m _A	m _{As}	m _{H[±]}	δ'_{14}	δ'_{25}
95 GeV	125.09 GeV	900 GeV	900 GeV	/ 325.86 GeV 900 GeV		-9.6958	0.2475
$tan(\beta)$	VS	C _{h1bb}	C _{h1tt}	$ ilde{\mu}^2$	$m_{S}^{\prime 2}$	alignm	
10	239.86 GeV	0.2096	0.4192	$8.128 \times 10^5 \text{ GeV}^2$	$-4.809 \times 10^4 \text{GeV}^2$	0.9998	

Allowed Parameter Space

- → strongest constraints from:
- bounded from below (bfb)
- unitarity
- LUX-ZEPLIN (LZ)
- Fermi-LAT
- → narrow allowed band around BP

Extend SM → Two Higgs Doublet Model with Complex Singlet (2HDMS)

Collider Phenomenology

Collider Phenomenology HL-LHC

m_{h_1}	<i>m</i> _{<i>h</i>₂}	m _{h3}	m _A	m _{As}	m _{H[±]}	δ'_{14}	δ'_{25}
95 GeV	125.09 GeV	900 GeV	900 GeV	00 GeV 325.86 GeV 900 GeV		-9.6958	0.2475
$tan(\beta)$	VS	C _{h1bb}	C _{h1tt}	$ ilde{\mu}^2$	$m_{S}^{\prime 2}$	alignm	
10	239.86 GeV	0.2096	0.4192	$8.128 \times 10^5 \text{ GeV}^2$	$-4.809 \times 10^4 \text{GeV}^2$	0.9998	

→ very low significance for BP

Process	C 1	C 2	C 3	C4	C 5
GGF	696	137	114	114	114
S		1	L.356 d	7	

Process	D1	D2	D3	D4	D5	D6
VBF	0.98	0.39	0.28	0.23	0.23	0.23
S			0.00)7 σ		

Collider Phenomenology Future Lepton Colliders (e⁺e⁻/µ⁺µ⁻)

m_{h_1}	m_{h_2}	m _{h3}	m _A	m_{A_S} $m_{H^{\pm}}$		δ'_{14}	δ'_{25}
95 GeV	125.09 GeV	900 GeV	900 GeV	325.86 GeV	900 GeV	-9.6958	0.2475
$tan(\beta)$	VS	C _{h1bb}	C _{h1tt}	$ ilde{\mu}^2$	$m_S^{\prime 2}$	alignm	-
10	239.86 GeV	0.2096	0.4192	$8.128 \times 10^5 \text{ GeV}^2$	$-4.809 \times 10^4 \text{GeV}^2$	0.9998	×

h1.2.3 e^{-}/μ^{-} → AcAc 10^{-2} AcAc AcAcv 10⁰ → AsAsV 10^{-2} [q] ه 10⁻⁴ 10^{-6} 10^{-8} 103 2×10^{3} 3×10^{3} √*s* [GeV]

 e^{+}/μ^{+}

Dark Matter (DM) Phenomenology

(Relic Density, Indirect Detection, Direct Detection)

- can fit 95 GeV excess in 2HDMS
- strong constraints from: bfb, unitarity, LZ, Fermi-LAT

Collider

Phenomenology (HL-LHC,

HIUMI)

Future Lepton Colliders)

- significance at HL-LHC rather low
 - \rightarrow can be improved with machine learning
 - → comprehensive parameter scans planned
- potentially promising prospects at Future Lepton Colliders
 - → further improvement with polarized beams
 - → further parameter scans planned
- muon collider shows best prospects of production cross section

m	<i>n</i> 1	m _{h2}	m _{h3}	m _A	m _{As}	m _{H[±]}	δ'_{14}	δ'_{25}
95 G	eV	125.09 GeV	900 GeV	900 GeV	325.86 GeV 900 GeV		-9.6958	0.2475
tan(β)	VS	C _{h1bb}	C _{h1tt}	$\tilde{\mu}^2$ $m_S^{\prime 2}$		alignm	
10)	239.86 GeV	0.2096	0.4192	$8.128 \times 10^5 \text{ GeV}^2$	$-4.809 \times 10^4 \text{GeV}^2$	0.9998	\mathbf{X}

Decay Modes	Branching Ratio (BR)
$h_3 \rightarrow b\bar{b}$	0.412
$h_3 \rightarrow A_S A_S$	0.247
$h_3 \rightarrow t\bar{t}$	0.106
$h_3 \rightarrow \tau \tau$	0.064
$h_3 \rightarrow h_2 h_2$	0.061
$h_3 \rightarrow h_1 h_2$	0.035
$h_3 \rightarrow h_1 h_1$	0.022

We generated the gluon gluon fusion process with h_3 successively decaying into a pair of DM candidates in Madgraph_aMC_v3.4.1. For **BP1**, $\sigma_{GGF} \times BR(h_3 \times A_S A_S) =$ 0.232 fb. We perform the signal analyses using the following cuts successively from Ref. [58] on the benchmark **BP1**,

- C1: The final state consists of up to four jets with $p_T > 30$ GeV and $|\eta| < 2.8$.
- C2: We demand a large $\not\!\!\!E_T > 250$ GeV.
- C3: The hardest leading jet has $p_T > 250$ GeV with $|\eta| < 2.4$.
- C4: We demand $\Delta \Phi(j, \not\!\!\!E_T) > 0.4$ for all jets and $\Delta \Phi(j, \not\!\!\!E_T) > 0.6$ for the leading jet.
- C5: A lepton-veto is imposed for electrons with $p_T > 20$ GeV and $|\eta| < 2.47$ and muons with $p_T > 10$ GeV and $|\eta| < 2.5$.

Process	C1	C2	C3	C4	C5
GF	696	137	114	114	114
S		1	.356 a	7	

Table 9. The cut flow table for the number of signal events for **BP1** at leading order (LO) and signal significance S at $\sqrt{s} = 14$ TeV and $\mathcal{L} = 3000$ fb⁻¹. The SM background is obtained from Ref. [58].

- **D1**: The final state consists of at least two jets with $p_T(j_1) > 80$ and $p_T(j_2) > 40$ GeV and $\Delta \Phi(j_i, \not \!\!\!E_T) > 0.5$.
- **D2**: We demand $\eta j_1 j_2 < 0$ and $\Delta \Phi j_1 j_2 < 1.5$.
- **D3**: We demand $|\Delta \eta|_{jj} > 3.0$.
- D4: The invariant mass of the two forward jets is required to be large, i.e, $M_{jj} > 600$ GeV.
- **D5**: We demand $\not\!\!\!E_T > 200$ GeV.
- D6: Furthermore, a lepton veto is imposed for electrons with p_T > 20 GeV or muons with p_T > 10 GeV.

Process	D1	D2	D3	D4	D5	D6
VBF	0.98	0.39	0.28	0.23	0.23	0.23
S	0.007σ					

Table 10. The cut flow table for the signal cross-sections for **BP1** at LO and signal significance S at $\sqrt{s} = 14$ TeV and $\mathcal{L} = 3000$ fb⁻¹. The SM background is obtained from Ref. [58].

Future Lepton Colliders: Event generation with WHIZARD, cuts:

• Photon cuts: $E_{\gamma} > 10$ GeV, $\Theta > 7^{\circ}$

Ωh²

29