Soft photon emission at the LHC and the LBK theorem

Roger Balsach in colaboration with: Domenico Bonocore and Anna Kulesza

DESY Theory Workshop 2023 New Perspectives in Conformal Field Theory and Gravity

September 28, 2023

Why soft photons?

Ratio of observed soft photon over expected from soft bremsstrahlung. [C. Wong (2014)]

Experiment	Collision Energy	Photon k_T	Obs/Brem Ratio
K ⁺ p, CERN, WA27, BEBC (1984)	70 GeV	$k_T <$ 60 MeV	4.0 ±0.8
K ⁺ p, CERN, NA22, EHS (1993)	250 GeV	$k_T <$ 40 MeV	6.4 ±1.6
π^+p , CERN, NA22, EHS (1997)	250 GeV	$k_T <$ 40 MeV	6.9 ±1.3
π^-p , CERN, WA83, OMEGA (1997)	280 GeV	$k_T < 10 \; { m MeV}$	7.9 ±1.4
π^+p , CERN, WA91, OMEGA (2002)	280 GeV	k_T <20 MeV	5.3 ±0.9
pp, CERN, WA102, OMEGA (2002)	450 GeV	$k_T <$ 20 MeV	4.1 ±0.8
$e^+e^- \rightarrow$ hadrons, CERN, LEP, DELPHI with hadron production (2010)	∼91 GeV(CM)	$k_T <$ 60 MeV	4.0
$e^+e^-\! \to\! \mu^+\mu^-$, CERN, LEP, DELPHI with no hadron production (2008)	∼91 GeV(CM)	$k_T <$ 60 MeV	1.0

- Excess of observed soft photons, but only for processes involving hadrons.
- Future upgrades on the ALICE detector (ALICE 3 expected by \sim 2035) will be able to measure ultra-soft photons, up to 1MeV.
- An efficient implementation for computing soft photon emission is needed.

Future experiments

ALICE 3 (\sim 2035) [ALICE collaboration (2022)]

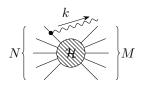
Observables	Kinematic range	
Heavy-flavour hadrons	$egin{aligned} p_{ m T} & ightarrow 0, \ m{\eta} < 4 \end{aligned}$	
Dielectrons	$p_{\rm T} \approx 0.05$ to $3 {\rm GeV}/c$, $M_{\rm ee} \approx 0.05$ to $4 {\rm GeV}/c^2$	
Photons	$p_{\rm T} \approx 0.1$ to $50 {\rm GeV}/c$, $-2 < \eta < 4$	
Quarkonia and exotica	$p_{ m T} ightarrow 0, \ oldsymbol{\eta} <1.75$	
Ultrasoft photons	$p_{\mathrm{T}} \approx 1 \text{ to } 50 \mathrm{MeV/}c,$ $3 < \eta < 5$	
Nuclei	$p_{ m T} ightarrow 0, \ \eta < 4$	

Table 3: Overview of key physics objects and the respective kinematic ranges of interest for ALICE 3.

- Exploration of real and virtual soft photons
- $pp \to pp\pi^+\pi^- + \gamma$ and $pp \to ppJ/\psi + \gamma$ processes

Soft photon emission: Eikonal (LP) approximation

Emission of a soft photon from a general process $N \to M + \gamma$:



$$\mathcal{A}_{j} = Q_{j}\bar{v}(p_{j}) \notin^{*}(k) \frac{k - p_{j} + m}{(p_{j} - k)^{2} - m^{2}} \mathcal{H}_{j}(p_{1}, \dots, p_{j} - k, \dots, p_{N+M})$$

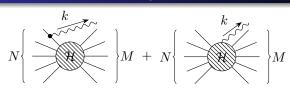
In the limit of soft photons (k o 0) [F.E. Low - Phys.Rev. (1958)]

$$\mathcal{A}_{j}^{\mathrm{LP}} = Q_{j} \frac{p_{j} \cdot \varepsilon^{*}(k)}{p_{j} \cdot k} \mathcal{H}(p)$$

Summing over all possible photon emissions,

$$\mathcal{A}^{\mathrm{LP}} = \left(\sum_{j} \eta_{j} Q_{j} \frac{p_{j} \cdot \varepsilon^{*}(k)}{p_{j} \cdot k}\right) \mathcal{H}(p), \qquad \eta = \begin{cases} +1 & \text{ for anti-fermions} \\ -1 & \text{ for fermions} \end{cases}$$

Soft photon emission: NLP (Low-Burnett-Kroll Theorem)



$$\mathcal{A} = \varepsilon_{\mu}^{*} \left(\mathcal{A}_{\mathrm{ext}}^{\mu} + \mathcal{A}_{\mathrm{int}}^{\mu} \right) \Longrightarrow k_{\mu} \left(\mathcal{A}_{\mathrm{ext}}^{\mu} + \mathcal{A}_{\mathrm{int}}^{\mu} \right) = 0 \Longrightarrow k_{\mu} \mathcal{A}_{\mathrm{int}}^{\mu} = -k_{\mu} \mathcal{A}_{\mathrm{ext}}^{\mu}$$

Considering only tree-level diagrams $\mathcal{A}^{\mu}_{\mathrm{int}}$ is fully determined by $\mathcal{A}^{\mu}_{\mathrm{ext}}$: [S.L. Adler, Y. Dothan - Phys. Rev. (1966)]

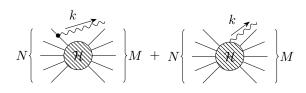
$$\mathcal{A}_{\text{LP+NLP}}^{\mu}(p,k) = \sum_{j} \frac{\eta_{j} Q_{j}}{k \cdot p_{j}} \left[p_{j}^{\mu} + i \eta_{j} k_{\nu} \frac{\hat{\sigma}_{j}^{\mu\nu}}{2} + (k \cdot p_{j}) G_{j}^{\mu\nu} \hat{D}_{j\nu} \right] \mathcal{H}$$

$$G_{j}^{\mu\nu} = g^{\mu\nu} - \frac{p_{j}^{\mu} k^{\nu}}{p_{j} \cdot k}$$

- $\hat{\sigma}_j^{\mu\nu}\mathcal{H}$: Substitute $u(p_j)\to\sigma^{\mu\nu}u(p_j)$ or equivalent for anti-fermions and final-state fermions.
- $\hat{D}_{j\nu}\mathcal{H}$: Differentiate the amputated part of \mathcal{H} with respect to p_j^{ν} :

$$\bar{\mathcal{H}}_j u(p_j) \to \frac{\partial \bar{\mathcal{H}}_j}{\partial p_j^{\nu}} u(p_j)$$

Soft photon emission: NLP (Low-Burnett-Kroll Theorem)



The expression is simplified considering the unpolarized process and computing $\overline{|\mathcal{A}|}^2$. [T.H. Burnett, N.M. Kroll - Phys.Rev.Lett. (1967)]
This is because of the relation

$$ik_{\nu} \left[\sigma^{\mu\nu}, p_j \pm m \right] = -2(k \cdot p_j) G^{\mu\nu} \frac{\partial (p_j \pm m)}{\partial p_j^{\nu}}$$

which allows to combine all the NLP terms together;

$$\overline{|\mathcal{A}|}_{\text{LP+NLP}}^{2} = -\sum_{i,j} \frac{(\eta_{i}Q_{i}p_{i}) \cdot (\eta_{j}Q_{j}p_{j})}{(p_{i} \cdot k)(p_{j} \cdot k)} \left[1 + \frac{(p_{j} \cdot k)p_{i\mu}}{p_{i} \cdot p_{j}} G_{j}^{\mu\nu} \frac{\partial}{\partial p_{j}^{\nu}} \right] \overline{|\mathcal{H}|}^{2}$$

Conservation of 4-momentum

Conservation of 4-momentum: LP approximation

• Low's theorem relates the amplitude $\mathcal A$ for $N \to M + \gamma$ to the amplitude $\mathcal H$ for $N \to M$.

$$\mathcal{A}_{\mathrm{LP}}(p,k) = \left(\sum_{i} \eta_{i} Q_{i} \frac{p_{i} \cdot \varepsilon^{*}(k)}{p_{i} \cdot k}\right) \mathcal{H}(p)$$

- It is not possible to impose conservation of 4-momentum for both amplitudes simultaneously. Low's theorem relates a physical amplitude to an unphysical one.
- Even worse, Feynman amplitudes are ill-defined for arbitrary 4-momenta: $\tilde{\mathcal{M}} = \mathcal{M} + \Delta$ is physically equivalent to \mathcal{M} if $\Delta(p)$ vanishes when $\sum_i p_i = 0$.
- Low's theorem gives a relation between a well-defined quantity and an ill-defined one!

Conservation of 4-momentum: LP approximation

The amplitude A must have a unique, well-defined value if 4-momentum is conserved: $\sum_i p_i = k$.

Because $\mathcal{H}(p)$ is not well defined we have an ambiguity on $\mathcal A$ given by

$$\left(\sum_{i} \eta_{i} Q_{i} \frac{p_{i} \cdot \varepsilon^{*}(k)}{p_{i} \cdot k}\right) \Delta(p)$$

 $\Delta(p)$ must vanish at the surface $\sum_i p_i = 0$, so

$$\sum_{j} p_{j} \to 0 \Longrightarrow \Delta(p) \to 0$$

which means $\Delta(p) = \mathcal{O}(k)$ and the ambiguity in $\mathcal A$ is a NLP correction.

Low's theorem can be used unambiguously at LP.

Conservation of 4-momentum: NLP approximation

$$\overline{|\mathcal{A}|}_{\text{LP+NLP}}^{2} = -\sum_{i,j} \frac{(\eta_{i}Q_{i}p_{i}) \cdot (\eta_{j}Q_{j}p_{j})}{(p_{i} \cdot k)(p_{j} \cdot k)} \left[1 + \frac{(p_{j} \cdot k)p_{i\mu}}{p_{i} \cdot p_{j}} G_{j}^{\mu\nu} \frac{\partial}{\partial p_{j}^{\nu}} \right] \overline{|\mathcal{H}|}^{2}$$

In general, we proved the following:

For any function $\Delta(p)$ that vanish in the surface $\sum_i p_i = 0$, gauge invariance implies that

$$\sum_{i,j} \frac{(\eta_i Q_i p_i) \cdot (\eta_j Q_j p_j)}{(p_i \cdot k)(p_j \cdot k)} \left[1 + \frac{(p_j \cdot k) p_{i\mu}}{p_i \cdot p_j} G_j^{\mu\nu} \frac{\partial}{\partial p_j^{\nu}} \right] \Delta(p) = \mathcal{O}(1)$$

So, Low's theorem gives a well-defined result also at NLP for any amplitude \mathcal{H} , as long as the exact same amplitude is used consistently everywhere.

Shifted kinematics

Shifted kinematics

Idea: Evaluate $\mathcal H$ using a different set of conserved momenta so that $\mathcal H$ is uniquely defined.

[T.H. Burnett, N.M. Kroll - Phys.Rev.Lett. (1967)] [V. Del Duca, E. Laenen, L. Magnea, L. Vernazza, C.D. White - JHEP (2017)] [D. Bonocore, A. Kulesza - Phys.Rev.B (2021)]

The expression for LBK theorem looks like a first order expansion:

$$\overline{|\mathcal{A}|}_{\mathrm{LP+NLP}}^{2} = -\sum_{i,j} \frac{(\eta_{i}Q_{i}p_{i}) \cdot (\eta_{j}Q_{j}p_{j})}{(p_{i} \cdot k)(p_{j} \cdot k)} \left[1 + \frac{(p_{j} \cdot k)p_{i\mu}}{p_{i} \cdot p_{j}} G_{j}^{\mu\nu} \frac{\partial}{\partial p_{j}^{\nu}} \right] \overline{|\mathcal{H}|}^{2}$$

$$\overline{|\mathcal{A}|}_{\mathrm{LP+NLP}}^{2} = -\left(\sum_{i,j} \frac{(\eta_{i}Q_{i}p_{i}) \cdot (\eta_{j}Q_{j}p_{j})}{(p_{i} \cdot k)(p_{j} \cdot k)} \right) \overline{|\mathcal{H}(p + \delta p)|}^{2}$$

$$= -C \overline{|\mathcal{H}(p + \delta p)|}^{2}$$

$$\delta p_{j}^{\nu} = \eta_{j}Q_{j}C^{-1} \sum_{i} \left(\frac{\eta_{i}Q_{i}p_{i\mu}}{p_{i} \cdot k} \right) G_{j}^{\mu\nu}$$

 $p_j + \delta p_j$ fulfil the conservation of momentum for \mathcal{H} ;

$$\sum_{j} \delta p_{j} = -k \Longrightarrow \sum_{j} (p_{j} + \delta p_{j}) = 0$$

On-shell shifted kinematics

$$\overline{|\mathcal{A}|}_{\text{LP+NLP}}^2 = -C\overline{|\mathcal{H}(p+\delta p)|}^2$$

$$\delta p_j^{\nu} = \eta_j Q_j C^{-1} \sum_i \left(\frac{\eta_i Q_i p_{i\mu}}{p_i \cdot k} \right) G_j^{\mu\nu} = \mathcal{O}(k)$$

The shifts modify the mass of the particles by NNLP terms.

$$p_j \cdot \delta p_j = 0 \Longrightarrow (p_j + \delta p_j)^2 = m_j^2 + \mathcal{O}(k^2)$$

This is consistent with the approximation, but not ideal for numerical implementations.

On-shell shifted kinematics

$$\overline{|\mathcal{A}|}_{\mathrm{LP+NLP}}^2 = -C\overline{|\mathcal{H}(p+\delta p)|}^2$$

$$\delta p_j^{\nu} = \eta_j Q_j C^{-1} \sum_i \left(\frac{\eta_i Q_i p_{i\mu}}{p_i \cdot k} \right) G_j^{\mu\nu} = \mathcal{O}(k)$$

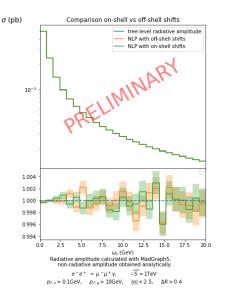
The shifts modify the mass of the particles by NNLP terms.

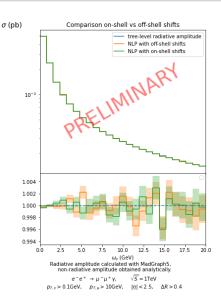
$$p_j \cdot \delta p_j = 0 \Longrightarrow (p_j + \delta p_j)^2 = m_j^2 + \mathcal{O}(k^2)$$

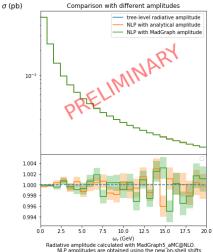
This is consistent with the approximation, but not ideal for numerical implementations.

We found an alternative way to do the shifts that:

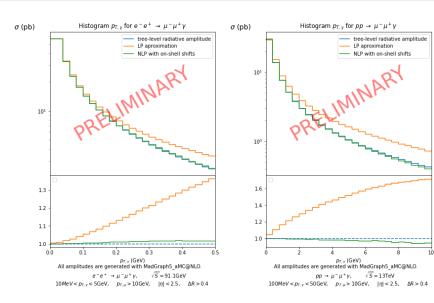
- is consistent with LBK theorem at NLP,
- satisfies four-momentum conservation,
- ullet keeps the particles on-shell to all orders in the expansion of k.

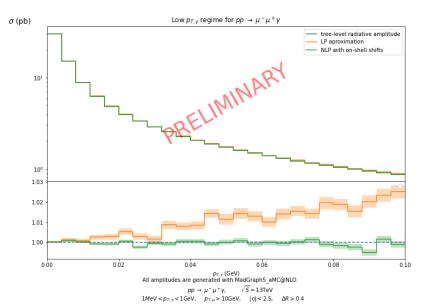






Radiative amplitude calculated with MadGraph5 aMC@NLO. NLP amplitudes are obtained using the new on-shell shifts $e^-e^+ \rightarrow \mu^-\mu^+\gamma$, $\sqrt{S} = 1\text{TeV}$ $p_{7,\gamma} > 0.1\text{GeV}$, $p_{7,\mu} > 10\text{GeV}$, $|\eta| < 2.5$, $\Delta R > 0.4$





Conclusions

- Precision predictions call for understanding the NLP terms.
- LBK theorem is free of inconsistencies and can be used safely for calculating soft photon spectra.
- ullet Reformulation of LBK theorem using on-shell shifted kinematics opens the door to an efficient implementation for the NLP approximation for the emission of (ultra-)soft photons (e.g. as measured in the future by ALICE3 detector).
- More work has to be done in order to understand the origin of the soft photon anomaly observed at LEP.