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Roadmap

* Motivation for the machine learning approach

* Introduction to neural networks

* Description of the physical problem we want to solve

e Computational setup and network architecture

* Results and comparison of the network to different methods

e Extraction of knowledge from the network



Motivation

 Simulate behavior of fermions in solid states using Quantum Monte Carlo
Simulations [arxiv:2012.11914]

* The results of these simulations are in the imaginary time domain and thus not
comparable with reality. Their relation is ill-posed

e |dea: Using a neural network to construct the corresponding spectral density
function [arXiv:1612.04895, arXiv:cond-mat/0612233, arXiv:1806.03841,
arXiv:2302.11317, arXiv:2111.12266]

* Using a simple toy model (1D Hubbard Model) to test and develop a network for
this task



Introduction to
Neural Networks




Neural networks in short

 Neural networks are networks of
repeating units called neurons

 Universal function approximator
f:RN - RM

e LetX € RN be aninput, W € RY x RM 3
weight matrix, f a non-linear activation
function, and b € RM the bias

y=f(W-%+b)
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-
Gradient descent

Backpropagation

Forward Backpropagate error
Determine error

Yanick Thurn, University of Wuerzburg



The problem




The analytic continuation problem

g(r)=—jdw A(w) = X o A(w)

With (Green und spectral function)

Al(w) :% Im(GR(w))
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The analytic continuation problem

e As
lim K (w) -0

w—too

Therefore, the inverse function reacts chaotically to noise

A direct solution for A(w) is not stable
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Computational
aspects
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Training data

* We train a network in supervised manner using the Dataset
D ={(G(),A(w)), ..}

e The training data are randomly generated:

Select a number n € [1, 8] of gaussians (uniform random)

Place the gaussians randomly (uniform) at w € [—10, 10] with random variance ¢ €
[0.4,1.4]

Select random height but with exponential decay towards boundaries

Normalize function (this is now the spectral density function)

Use G(1) = K o A(w) to calculate the Greens function in the imaginary time domain



‘Real’ ¢(1) data

Greens function
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Neural network &—C

. T
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fi

ne network consists of three parts: Convolutional and Dense

ne intuition for the convolutional part of the network is to

low it to compute local operations such as the gradient or fir

ters
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4

R 5’

Intuition to our
architecture

» Data include noise
+ local operators, i.e., slope, seem intuitively important = Conv. layer

« Symmetry of the data = AvgPool instead of MaxPool

« Qutputis not restricted = Divergent instead of Convergent activation function
» Negative output allowed = no RelLU (Moreover, its bad for training)

» Negative should not be treated different = no LeakyRelU

« Qutput requires many nodes to be precise = ConvTranspose

 Physical restrictions (Positive semi definite, Normalized) = RelLU + Normalization

Yanick Thurn, University of Wuerzburg

ConvTranspose
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Normalization




Results
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Example Images

Distance: 2.6883345717536544
Wasserstein-distance: 1.20e-03

Distance: 0.25192599184932607
Wasserstein-distance: 1.22e-04
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Comparison to
analytic
results
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Comparison to Max-Ent

 Original (orange), Max-Ents
(blue) and Networks (green)
approximated spectral density
function A(w)
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Comparison to
Max-Ent

* Original (orange),
Max-Ents (blue) and
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Over some (64) validation data, the difference
between the predicted spectral density function and
the expected one was

Max-Ent (35+1.7) - 103 (225 + 94)
Network (2.0 £1.2)-1073 (125 £ 60)
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What can we
learn from this
approach?
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Layer-wise
relevance
propagation

- Usually used in categorization problems
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- By summarizing over all output-nodes, we can
see what the networks sees as relevant for its

decision

- Not all parts of the Greens function are equally Al e R
important

- The “longer” arm of the Greens function is more g
important

Relevance (blue colorbar) for different values of G(7) for
the neural network
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Conclusion & Outlook

« Using the network we were able to see the spin-charge separation in the k-space image

« For the tested Green functions, the predicted spectral density function had a distance to the
expectation of
¢ Max-Ent: (3.5 + 1.7) - 1073 [Wasserstein], (225 + 94) [L1-Norm]
« Network: (2.0 + 1.2) - 1073 [Wasserstein], (125 + 60) [L1-Norm]

* |In contrast to Max-Ent, the network does not rely on a priori knowledge of the spectral density
function.

At least for the network, it seems the input points of the Greens function are not equally relevant.
Instead, certain parts of the function seem to be of special relevance

* |f the network can be improved further, it may be a suitable alternative for Max-Ent, if no a priori
knowledge is available

Understanding how the network weights the points may yield improvements for Max-Ent



Hubbard model

» Simple model for electrons in solids
« Simulation on a lattice
 Electrons on the same slot experience Coulomb interactions

 Electrons behavior is described by three aspects:

« Coulomb repulsion
 Kinetic energy
 Pauli principle



