N3LO Drell-Yan crosssections confronts data

Federico Vazzoler & Simone Amoroso

New perspectives in Conformal Field Theory and Gravity - DESY

27th September 2023

Outline

• The Drell-Yan processes Historical intro

- Bleeding-edge Drell-Yan predictions
- Scope of this work
- Simulation setup
- Data confronting theory
- Outlook

The Drell-Yan process

Drell-Yan processes play a fundamental role in advancing our understanding of subatomic particles and their interactions:

- Test theoretical predictions + determination of fundamental parameters of the SM: $\alpha_{s'} m_{W'} \sin^2 \theta_{W'} \dots$
- **Probing PDFs**: increased data/prediction accuracy \rightarrow increased PDFs determination
- Constraint New Physics: extremely tiny deviations could be visible from extremely precise measurements, EFT approach

Precise Drell-Yan predictions

$$\frac{d\sigma}{dQ^2} = \sum_{i,j} \int_0^1 dx_1 dx_2 f_i(x_1, \mu_F) f_j(x_2, \mu_F) \cdot \hat{\sigma}_{i,j}(z, \mu_F, \mu_R)$$

- Increase the precision of our predictions → reduce theoretical uncertainties
- Factorisation theorem:

Parton Distribution Functions (PDFs): non-computable in pert. theory (fits to data)

Partonic cross-section: missing higher-order contributions

- QCD: "captured" by μ_R and μ_F scale variations
- EW: include weak and QED corrections

Drell-Yan: data and K-factors

 Observation from the beginning: data lay above the naive DY prediction → introduction of a "K-factor"

$$\left(\frac{d\sigma}{dQ^2}\right)_{\text{meas.}} = k \cdot \left(\frac{d\sigma}{dQ^2}\right)_{\text{pred}}$$

 "Simple" tree-level predictions are not _ enough to describe the data!

 What happens when including higherorder corrections (e.g. beyond LO)?

Drell-Yan: data and K-factors

- State-of-the-art: NNLO QCD fiducial predictions
- First NNLO QCD predictions for the Drell-Yan process were published by Petriello et al in 2004 [hep-ph/0404184]
- Nowadays widely used by experimental collaborations (e.g. at the LHC)
- Several publicly available PDF sets available at NNLO → fully consistent predictions
- Good agreement with experimental data

Bleeding-edge predictions

Partonic cross-section:

C. Duhr, F. Dulat, and B. Mistlberger, "The Drell-Yan cross section to third order in the strong coupling constant". Phys. Rev. Lett. 125 (2020) 172001. DOI: 10.1103/PhysRevLett.125.172001, arXiv:2001.07717.

C. Duhr, F. Dulat, and B. Mistlberger, "Charged Current Drell-Yan Production at N3LO". JHEP 11 (2020) 143. DOI: 10.1007/JHEP11(2020)143, arXiv:2007.13313.

C. Duhr and B. Mistlberger, "Lepton-pair production at hadron colliders at N3LO in QCD". JHEP 03 (2022) 116. DOI: 10.1007/JHEP03(2022)116, arXiv:2111.10379.

+ Others ...

Bleeding-edge predictions

Partonic cross-section:

$$\frac{d\sigma}{dQ^2} = \sum_{i,j} \int_0^1 dx_1 dx_2 f_i(x_1, \mu_F) f_j(x_2, \mu_F) \cdot \hat{\sigma}_{i,j}(z, \mu_F, \mu_R)$$

Bleeding-edge predictions

Parton distribution functions:

Scope of this work

 Compare inclusive DY cross-section measurements to bleedingedge predictions (N³LO QCD + NLO EW)

aN³LO PDFs sets + N³LO ME \rightarrow fully consistent theoretical prediction

 LHC offers precise measurements at different energies (probe different x)

- An important benchmark for (new) ME and PDFs at $N^{3}LO$
- Inspired by similar work by S. Moch et. al arXiv:1011.6259 (data compared to NNLO predictions)

Why inclusive cross-sections?

Experimental cross-sections are measured in a fiducial volume (e.g. by applying kinematic requirements on the lepton(s) kinematics variable)

Fiducial predictions at N³LO are possible within the q_T subtraction framework (remove divergences associated with small transverse momenta) \rightarrow DYTurbo, Radish+NNLOJet, MCFM, ...

But:

 Very easy to compute inclusive predictions: fiducial predictions require (very) slow NNLO V + Jet(s) piece

• Inclusive predictions are theoretically "cleaner": no need to care for fiducial power corrections, q_T resummation effects, ...

The N3LOXS Matrix Element computation tool

<u>n3loxs</u> tool (Baglio, Duhr, Mistlberger and Szafron, arXiv:<u>2209.0613</u>)

- Calculate cross sections up to N³LO in QCD at hadron colliders (NC and CC Drell-Yan but also Higgsstrahlung, Higgs production via gluon fusion ...)
- Drell-Yan calculation based on:
 - "The Drell-Yan cross section to third order in the strong coupling constant" arXiv:2001.07717
 - "Charged Current Drell-Yan Production at N3LO" arXiv:2007.13313
 - "Lepton-pair production at hadron colliders at N3LO in QCD" arXiv:<u>2111.10379</u>
- Quasi-Monte-Carlo (QMC) integration as implemented by arXiv:<u>1811.11720</u>

🐉 main 👻 🐉 1 branch 🛇 1	tag Go to file Add file
jubaglio Merge pull request #	3 from jubaglio/binning_inwork 06a56be on Sep 9, 2022
gsl-2.6	initial commit of the code, including DY and WH. The main a
include	Big update with full Drell-Yan and ZH processes
src src	changed banner info in bbH process, correct muF_0 now di
🗋 .gitignore	Update .gitignore
LICENSE	Initial commit
🗋 Makefile	Update Makefile
B README.md	Update of the README file
🗋 makegsl.sh	initial commit of the code, including DY and WH. The main a
🗋 n3loxs	bug corrected for the selection of binned W+ production (th
n3loxs_parameters.in	Big update with full Drell-Yan and ZH processes

E README.md

n3loxs 🦉	
----------	--

N3LO cross sections calculator

A tool suite to calculate up to N3LO in QCD various cross sections at hadron colliders:

- Neutral Drell-Yan p p(pbar) --> gamma*/Z + X (--> l+ l- + X)
- Charged Drell-Yan p p(pbar) --> W+/W- + X (--> l+ nu_l / l- ~nu_l + X)
- Higgsstrahlung p p(pbar) --> W+/W- H + X
- Higgsstrahlung p p(pbar) --> Z H + X
- Higgs production via gluon fusion g g --> H in the Born-improved approximation
- Bottom-quark fusion Higgs production b bbar --> H + X in the five-flavor scheme

Simulation setup

- Drell-Yan processes calculated for an off-shell gauge boson at a given virtuality $\mu_R^0 = \mu_F^0 = Q$ (= off-shellness of the intermediate vector boson)
- \odot Envelope of 7-point μ_R and μ_F scales (scales uncertainties)
- PDFs uncertainties included
- ullet Integrated cross section calculated in Q bin range:

• NCDY: $60 < Q < 120 \, \text{GeV}$

CCDY: 10 < Q < 200 GeV (ideally not needed, used to minimise execution code time. Predictions practically insensitive to larger intervals)

Simulation setup

• EW scheme used: ($lpha_{
m EM}(0), m_{
m Z}, m_{
m W}$)

• Input Electroweak parameters:

MW	=	80.377
GammaW	=	2.085
MZ	=	91.1876
GammaZ	=	2.4952
MH	=	125.09
Mt	=	172.5
Mb	=	4.58
mt(mt)	=	162.7
mb(mb)	=	4.18
vev	=	246.221
1/alpha	=	132.233229791

PDFs sets considered

- Only available N³LO PDF from the MSHT group \rightarrow from the same group sets at every order included ...
- ... + all other available PDFs at NNLO
- Include NNPDF N³LO PDF set once available
 - MSHT20lo_as130
 - MSHT20nlo_as118 -
 - MSHT20nnlo_as118 -
 - MSHT20an3lo_as118 -
 - NNPDF31_nnlo_as_0118_hessian ATLASpdf21_T3 -

- NNPDF40_nnlo_as_01180_hessian
- CT18NNLO
- CT18ANNLO
- ABMP16als118_5_nnlo

A word on NLO EW corrections

NLO EW corrections must be included to have the full picture $\rightarrow \alpha_{\rm S}^2 \sim lpha_{\rm EW}$

- \bullet NLO EW corrections not yet integrated into our work \rightarrow crucial step forward
- Experimental measurements \rightarrow leptons are corrected to the Born level (pre-FSR)
- \odot Simulation \rightarrow separates ISR, weak and IFI contributions from FSR
 - Gauge invariance helps separate ISR+weak+IFI components from FSR for the Z boson
 - Not gauge invariant for the W (FSR interplay) but can be approximated
- Employed powheg-ew for estimating (preliminary) EW corrections
 - ~6% effects on inclusive cross-sections
 - K factors almost energy-independent
- Plan to utilise ReneSANCe for W boson

 $\mathrm{pp} \to \mathrm{Z}/\gamma^* + \mathrm{X}$

\sqrt{s} [TeV]	$\sigma_{ m LO}$ [pb]	$\sigma_{ m NLO}$ [pb]	K ^{NLO}	$\sigma_{ m NNLO}$ [pb]	K ^{NNLO}	$\sigma_{\rm N^3LO}$ [pb]	K ^{N³LO}
2.76	231.5	301.5	1.3	311.1	1.03	313.3	1.01
5.02	503.9	637.2	1.26	661.7	1.04	659.1	1.0
7.0	754.1	938.5	1.24	977.7	1.04	968.0	0.99
8.0	882.6	1091.4	1.24	1138.2	1.04	1124.4	0.99
13.0	1536.9	1853.1	1.21	1936.6	1.05	1901.9	0.98
13.6	1616.2	1943.9	1.2	2031.4	1.05	1994.3	0.98

 $pp \rightarrow W^+ + X$

\sqrt{s} [TeV]	$\sigma_{ m LO}$ [pb]	$\sigma_{ m NLO}$ [pb]	K ^{NLO}	$\sigma_{ m NNLO}$ [pb]	K ^{NNLO}	$\sigma_{\rm N^3LO}$ [pb]	K ^{N³LO}
2.76	1645.9	2150.2	1.31	2207.6	1.03	2217.4	1.0
5.02	3301.3	4198.3	1.27	4335.0	1.03	4314.8	1.0
7.0	4730.8	5959.1	1.26	6177.8	1.04	6115.0	0.99
8.0	5447.5	6835.5	1.25	7096.4	1.04	7010.7	0.99
13.0	8998.1	11096.7	1.23	11555.7	1.04	11358.0	0.98

~20% ----> ~5% ----> ~2%

 $pp \rightarrow W^- + X$

\sqrt{s} [TeV]	$\sigma_{ m LO}$ [pb]	$\sigma_{ m NLO}$ [pb]	K ^{NLO}	$\sigma_{ m NNLO}$ [pb]	K ^{NNLO}	$\sigma_{\rm N^3LO}$ [pb]	K ^{N³LO}
2.76	1018.7	1275.2	1.25	1309.8	1.03	1316.7	1.01
5.02	2226.2	2770.1	1.24	2855.9	1.03	2838.6	0.99
7.0	3346.4	4126.7	1.23	4260.5	1.03	4212.2	0.99
8.0	3924.6	4817.1	1.23	4975.2	1.03	4910.3	0.99
13.0	6880.7	8264.4	1.2	8537.6	1.03	8390.0	0.98

~20% ----> ~5% ----> ~2%

Consistent PDF set order and ME computations

• Low \sqrt{s} values $\rightarrow N^3 LO$ comparable to NNLO + bands overlapping

• High \sqrt{s} values $\rightarrow N^3 LO < NNLO + bands not overlapping$

- Predictions at NNLO obtained with different PDFs sets compared to the aN³LO MSHT set
- Nothing unexpected \rightarrow would be interesting to have another N³LO PDF set to compare with

Input experimental data considered: $pp \to W^\pm$ and $pp \to Z$ inclusive cross sections from ATLAS and CMS

• $\sqrt{s} = 2.76, 5.02, 7, 8, 13 \text{ and } 13.6 \text{ TeV}$

• Electron and muon decay channels combined

 Measurements are extrapolated to inclusive phase-space by means of NLO PS predictions (extrapolation unc. included in the total meas. unc.)

 Some (potentially more) precise measurements not included atm. → focussed on measurements extrapolated by experiments

 \odot Total unc. $\delta^{ ext{Tot.}}$ ranges from 1.8 to 10 %

 \odot We extrapolated ATLAS Z boson data to a common $m_{\ell\ell}$ range (60 $< m_{\ell\ell} < 120\,{\rm GeV}$) at ${\rm N}^3{\rm LO}$

Measurements v.s. N³LO predictions

Are LO predictions able to describe the data?

Are NLO predictions able to describe the data?

Are NNLO predictions able to describe the data?

Are N³LO predictions able to describe the data?

Are N³LO predictions able to describe the data?

Impact of different PDF sets

Impact of different PDF sets

Impact of different PDF sets

Inclusive cross-section ratios

- ${\circ}$ Cross-section ratios (e.g. $\sigma_{W^+ \to \ell^+ \nu}/\sigma_{Z \to \ell^+ \ell^-})$ excellent tool to probe predictions
- Double cross-section ratios: $R_{data}/R_{theo.}$ considered
- $\bullet R_{\rm data}$ from ATLAS 7 TeV measurements
- $R_{\text{theo.}}$ computed at N³LO (only scale unc. included)
- \odot Good description of the W^+/W^- ratio

 ${\ensuremath{\, \circ }}$ For the W^{\pm}/Z ratios N^3LO predictions tend to undershoot the data

Inclusive cross-section ratios

Outlook

- Presented first steps for a comprehensive comparison of inclusive DY cross-section measurements (CMS + ATLAS) to bleeding-edge predictions (N³LO QCD)
- This study will help benchmark precision QCD calculations and phenomenological studies at the LHC
- Still a lot of room for improvement:
 - Incorporate Electroweak (EW) Corrections
 - Perform a quantitative comparison between data and predictions
 - Include recently available data from both 5 and 13 TeV collision energies with low pile-up conditions
 - igstarrow Investigate differential cross-sections as a function of $m_{\ell\ell}$

Additional material

 $pp \rightarrow Z/\gamma^* + X$

\sqrt{s}	$\sigma_{ m meas.}^{ m CMS}$	$\delta^{ ext{Tot.}}$ %	$\sigma_{ m meas.}^{ m ATLAS}$	$\delta^{ ext{Tot.}}$ %	$\sigma_{ m LO}$	$\sigma_{ m NLO}$	$\sigma_{ m NNLO}$	$\sigma_{ m N^3LO}$
2.76	298.4	5.1	328.5	4.9	231.5	301.5	311.1	313.3
5.02	669.0	2.2	690.8	2.2	503.9	637.2	661.7	659.1
7.0	974.0	4.5	1009.2	2.6	754.1	938.5	977.7	968.0
8.0	1138.0	3.5	1170.2	2.7	882.6	1091.4	1138.2	1124.4
13.0	2006.0	1.9	1995.6	2.9	1536.9	1853.1	1936.6	1901.9
13.6	2010.0	2.5	N.A.	N.A.	1616.2	1943.9	2031.4	1994.

 $pp \rightarrow W^+ + X$

\sqrt{s}	$\sigma_{ m meas.}^{ m CMS}$	$\delta^{ ext{Tot.}}$ %	$\sigma_{ m meas.}^{ m ATLAS}$	$\delta^{ ext{Tot.}}$ %	$\sigma_{ m LO}$	$\sigma_{ m NLO}$	$\sigma_{ m NNLO}$	$\sigma_{ m N^3LO}$
2.76	2380.0	9.6	2312.0	3.7	1645.9	2150.2	2207.6	2217.4
5.02	4402.0	2.0	4442.7	2.2	3301.3	4198.3	4335.0	4314.8
7.0	6040.0	4.3	6350.0	2.4	4730.8	5959.1	6177.8	6115.0
8.0	7110.0	3.2	7243.0	2.6	5447.5	6835.5	7096.4	7010.7
13.0	12130.0	1.8	11780.0	5.7	8998.1	11096.7	11555.7	11358.0

 $pp \rightarrow W^- + X$

\sqrt{s}	$\sigma_{ m meas.}^{ m CMS}$	$\delta^{ ext{Tot.}}$ %	$\sigma_{ m meas.}^{ m ATLAS}$	$\delta^{ ext{Tot.}}$ %	$\sigma_{ m LO}$	$\sigma_{ m NLO}$	$\sigma_{ m NNLO}$	$\sigma_{ m N^3LO}$
2.76	2.76	1450.0	10.7	1399.0	3.9	1018.7	1275.2	1309.8
5.02	5.02	2898.0	2.0	2917.8	2.2	2226.2	2770.1	2855.9
7.0	7.0	4260.0	4.4	4376.0	2.8	3346.4	4126.7	4260.5
8.0	8.0	5090.0	3.4	4995.0	3.0	3924.6	4817.1	4975.2
13.0	13.0	8910.0	1.9	8750.0	5.7	6880.7	8264.4	8537.6

Other selected results...

Material from <u>G. Ferrera</u>

Fixed-order calculations

 $lpha_S(Q) \sim 1/(eta_0 \ln Q^2/\Lambda_{QCD}^2) \sim 0.1$ (for $Q \sim m_H$).

$$\boldsymbol{\sigma} = \sum_{a,b} f_{a}(M^{2}) \otimes f_{b}(M^{2}) \otimes \boldsymbol{\hat{\sigma}}_{ab}(\boldsymbol{\alpha}_{S}) + \boldsymbol{\mathcal{O}}\left(\frac{\Lambda}{M}\right)$$

Perturbation theory at NNLO & beyond:

$$\hat{\boldsymbol{\sigma}}(\boldsymbol{\alpha}_{\mathsf{S}}) = \hat{\boldsymbol{\sigma}}^{(0)} + \boldsymbol{\alpha}_{\mathsf{S}} \, \hat{\boldsymbol{\sigma}}^{(1)} + \boldsymbol{\alpha}_{\mathsf{S}}^2 \, \hat{\boldsymbol{\sigma}}^{(2)} + \cdots$$

- LO result: only order of magnitude estimate.
 NLO: first reliable estimate.
 NNLO & beyond: precise prediction & robust uncertainty.
- Higher-order calculations not an easy task due to infrared (IR) singularities (impossible direct use of numerical techniques).

Drell-Yan	LO	NLO	NNLO
process	Drell,Yan	Altarelli, Ellis, Greco	Hamberg,van Neerven,
	(1974)	Martinelli,(1980-84)	Matsuura (1991)
	2		Melnikov,Petriello (2006)
	N°LO		Catani, Cieri, de Florian,
Duhr, I	Mistlberger (2	G.F.,Grazzini (2009)	
Camar	da,GF,Cieri(2	2021)	

Giancarlo Ferrera – Milan University & INFN Drell–Yan production at N³LL+N³LO in QCD

Material from <u>G. Ferrera</u> The q_T-subtraction method at NNLO (and beyond)

 $h_1(p_1) + h_2(p_2) \rightarrow F(M,q_T) + X$

F is one or more colourless particles (vector bosons, photons, Higgs bosons,...) [Catani,Grazzini('07)].

• **Observation:** at LO the q_T of the F is exactly zero.

$$\mathsf{d} oldsymbol{\sigma}^{\mathsf{F}}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}}|_{\mathsf{q}_{\mathsf{T}}
eq0}=\mathsf{d} oldsymbol{\sigma}^{\mathsf{F}+\mathrm{jets}}_{\mathsf{N}^{\mathsf{n} ext{-}1}\mathsf{LO}}$$
 ,

for $q_T \neq 0$ the NⁿLO IR divergences cancelled with the Nⁿ⁻¹LO subtraction method.

- The only remaining NⁿLO singularities are associated with the $q_T \rightarrow 0$ limit.
- Key point: treat the NⁿLO singularities at q_T = 0 by an additional subtraction using the universality of logarithmically-enhanced contributions from q_T resummation formalism [Catani, de Florian, Grazzini('00)].

$$\begin{split} \mathrm{d}\boldsymbol{\sigma}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}}^{\mathsf{F}} & \stackrel{q_{\mathsf{T}}\to 0}{\longrightarrow} & \mathrm{d}\boldsymbol{\sigma}_{\mathsf{LO}}^{\mathsf{F}} \otimes \Sigma(\mathsf{q}_{\mathsf{T}}/\mathsf{M})\mathsf{d}\mathsf{q}_{\mathsf{T}}^{2} \\ & = & \mathrm{d}\boldsymbol{\sigma}_{\mathsf{LO}}^{\mathsf{F}} \otimes \sum_{\mathsf{n}=1}^{\infty} \sum_{\mathsf{k}=1}^{2\mathsf{n}} \left(\frac{\boldsymbol{\alpha}_{\mathsf{S}}}{\pi}\right)^{\mathsf{n}} \Sigma^{(\mathsf{n},\mathsf{k})} \frac{\mathsf{M}^{2}}{\mathsf{q}_{\mathsf{T}}^{2}} \ln^{\mathsf{k}-1} \frac{\mathsf{M}^{2}}{\mathsf{q}_{\mathsf{T}}^{2}} \, \mathrm{d}^{2}\mathsf{q}_{\mathsf{T}} \end{split}$$

Material from <u>G. Ferrera</u> Fiducial power corrections within the q_T subtraction

[Camarda,Cieri,G.F.('21)]

$$\sigma_{fid}^{F} = \int_{cuts} \mathcal{H}^{F} \otimes d\sigma_{LO}^{F} + \int_{cuts} \left[d\sigma_{q_{T} > q_{T}^{cut}}^{F+\text{jets}} - d\sigma_{q_{T} > q_{T}^{cut}}^{CT} \right] + \mathcal{O}\left(\left(q_{T}^{cut} / M \right)^{p} \right)$$

- $d\sigma^{F+\text{jets}}$ and $d\sigma^{CT}$ are *separately* divergent, their sum is finite. A lower limit $q_T > q_T^{cut}$ is necessary with a power correction ambiguity $\mathcal{O}\left((q_T^{cut}/M)^p\right)$.
- Typical cuts on the p_T and rapidities of the final state particles leads to linear (p = 1) "fiducial" power corrections (FPC) $((q_T^{cut}/M)^p)$ [Alekhin et al.('21)].
- The limit $q_T^{cut} \rightarrow 0$ leads to large cancellations and large numerical integration uncertainties.
- Key point: FPC are absent in resummed calculations when q_T recoil is correctly taken into account.

$$\int_{cuts} d\sigma^{F+\text{jets } q_T \to 0} \int_{cuts} d\widetilde{\sigma}^{CT} + \mathcal{O}\left(\left(q_T / M \right)^2 \right)$$

where $d\tilde{\sigma}^{CT}$ is the q_T subtraction counteterm with the Born amplitude $\hat{\sigma}^{(0)}$ evaluated with the recoil kinematics [Catani, de Florian, G.F., Grazzini('15)].

Fiducial power corrections up to N³LO

- Flip sign of the FPC with order.
 Alternating-sign "unphysical" factorial growth of the FO expansion due to symmetric cuts [Salam,Slade('21)].
- Unphysical behaviour can be removed within resummed perturbative predictions. *However* the goal of having precise FO calculations is very relevant.
- No reduction of FPC with higher orders. At N³LO with $q_T^{cut} = 0.05 \text{ GeV} 0.4\%$ (+0.3% from α_S^2 and a -0.7% α_S^3 .
- Our method is crucial when *local* calculations are not available or when large numerical uncertainties are associated to the $q_T \rightarrow 0$ limit (e.g. at $N^3 LO$).