One-Loop UV/IR SMEFT dictionary

Based on 2303.16965

G. Guedes, J. Santiago, P. Olgoso

DESY.

guilherme.guedes@desy.de

Overview of CMS EXO results

The SMEFT

Expansion into higher dimensional operators:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{\mathcal{L}_6}{\Lambda^2} + \mathcal{O}(1/\Lambda^4) \qquad \begin{array}{l} \mathcal{L}_d = c_i \mathcal{O}_i \\ [\mathcal{O}_i] = d \end{array}$$

- **Bottom-up approach**: write low-energy observables in terms of effective coefficients, no mention of the UV details.
- <u>Top-down approach</u>: calculate value of wilson coefficients for particular UV scenarios.

Bottom-up approach: UV/IR dictionaries

Bottom-up approach: UV/IR dictionaries

Bottom-up approach: UV/IR dictionaries

• What is the data telling us?

 UV/IR dictionaries tell us *all* SM extensions which can contribute to a particular experimental observable (at an order in the EFT expansion)

Top-down approach: UV/IR dictionaries

- What are the low-energy consequences of a particular UV scenario?
- UV/IR dictionaries allows to map all these contributions finding correlations among WCs.
 - Done at a specific perturbative order through matching.

Dictionary at tree-level

 Tree-level dictionary to the SMEFT @ dim-6 already exists, with *all* possible extensions which can generate WCs and their explicity contribution.

$egin{array}{c} \mathcal{S} \ (1,1)_0 \end{array}$	$\frac{\mathcal{S}_1}{(1,1)_1}$	$\frac{\mathcal{S}_2}{(1,1)_2}$	$\varphi \\ (1,2)_{\frac{1}{2}}$	Ξ (1,3) ₀	Ξ_1 (1,3) ₁	$\Theta_1 \\ (1,4)_{\frac{1}{2}}$	$\Theta_3 \\ (1,4)_{\frac{3}{2}}$
$\frac{\omega_1}{(3,1)_{-\frac{1}{3}}}$	$\frac{\omega_2}{(3,1)_{\frac{2}{3}}}$	ω_4 (3,1) _{-$\frac{4}{3}$}	Π_1 $(3,2)_{\frac{1}{6}}$	$\frac{\Pi_{7}}{(3,2)_{\frac{7}{6}}}$	$\frac{\zeta}{(3,3)_{-\frac{1}{3}}}$		
$\Omega_1 \\ (6,1)_{\frac{1}{3}}$	Ω_2 $(6,1)_{-\frac{2}{3}}$	$\Omega_4 \\ (6,1)_{\frac{4}{3}}$	$\begin{array}{c} \Upsilon \\ (6,3)_{\frac{1}{3}} \end{array}$	$\begin{array}{c} \Phi\\ (8,2)_{\frac{1}{2}} \end{array}$			
$N \ (1,1)_0$	$E (1,1)_{-1}$	Δ_1 (1,2)	$\begin{array}{c} \Delta \\ \frac{1}{2} & (1,2) \end{array}$	$(1)_{-\frac{3}{2}}$	Σ $(1,3)_0$ (1)	$\frac{\Sigma_1}{1,3)_{-1}}$	
$U \ (3,1)_{rac{2}{3}}$	D (3,1) _{-$\frac{1}{3}$}	Q_1 $(3,2)_{\frac{1}{6}}$	Q (3, 2)	$5)_{-\frac{5}{6}}$ (3)	Q_7 $(3,2)_{\frac{7}{6}}$ (3)	T_1 $(3,3)_{-\frac{1}{3}}$	T_2 (3,3) _{2/3}
\mathcal{B} $(1,1)_0$	$egin{array}{c} \mathcal{B}_1 \ (1,1)_1 \end{array}$	\mathcal{W} $(1,3)_0$	\mathcal{W}_1 $(1,3)_1$	\mathcal{G} $(8,1)_0$	\mathcal{G}_1 $(8,1)_1$	\mathcal{H} $(8,3)_0$	$\begin{array}{c} \mathcal{L}_1 \\ (1,2)_{\frac{1}{2}} \end{array}$
$\frac{\mathcal{L}_3}{(1,2)_{-\frac{3}{2}}}$	\mathcal{U}_2 $(3,1)_{\frac{2}{3}}$	$\mathcal{U}_5\\(3,1)_{\frac{5}{3}}$	$\mathcal{Q}_1 \\ (3,2)_{\frac{1}{6}}$	$\mathcal{Q}_5 \\ (3,2)_{-\frac{5}{6}}$	$\frac{\mathcal{X}}{(3,3)_{\frac{2}{3}}}$	$\frac{\mathcal{Y}_1}{(\bar{6},2)_{\frac{1}{\bar{6}}}}$	$\frac{\mathcal{Y}_5}{(\bar{6},2)_{-\frac{5}{\bar{6}}}}$

De Blas, Criado, Perez-Victoria, Santiago, 1711.10391

Dictionary at tree-level

- Tree-level dictionary to the SMEFT @ dim-6 already exists, with *all* possible extensions which can generate WCs and their explicity contribution.
- Some operators can be generated at one-loop
 - Considering weakly coupled renormalizable UV

Craig, Jiang, Li, Sutherland 2001.00017

\mathcal{S} $(1,1)_0$	$\frac{\mathcal{S}_1}{(1,1)_1}$	$\frac{\mathcal{S}_2}{(1,1)_2}$	$\varphi \\ (1,2)_{\frac{1}{2}}$	Ξ (1,3) ₀	Ξ_1 (1,3) ₁	$\begin{array}{c} \Theta_1 \\ (1,4)_{\frac{1}{2}} \end{array}$	$\Theta_3 \\ (1,4)_{\frac{3}{2}}$
$\frac{\omega_1}{(3,1)_{-\frac{1}{3}}}$	ω_2 (3,1) $_{\frac{2}{3}}$	$\frac{\omega_4}{(3,1)_{-\frac{4}{3}}}$	$\frac{\Pi_1}{(3,2)_{\frac{1}{6}}}$	$\frac{\Pi_{7}}{(3,2)_{\frac{7}{6}}}$	$\frac{\zeta}{(3,3)_{-\frac{1}{3}}}$		
$\Omega_1 \\ (6,1)_{\frac{1}{3}}$	$\Omega_2 \\ (6,1)_{-\frac{2}{3}}$	$\Omega_4 \\ (6,1)_{\frac{4}{3}}$	Υ (6,3) _{1/3}	$\begin{array}{c} \Phi\\ (8,2)_{\frac{1}{2}} \end{array}$			
$\frac{N}{(1,1)_0}$	$E (1,1)_{-1}$	$\frac{\Delta_1}{(1,2)}$	$\begin{array}{c} \Delta \\ \\ \frac{1}{2} \end{array} (1,2)$	$3 \\)_{-\frac{3}{2}} $ (1	Σ $(1,3)_0$	Σ_1	
$U \\ (3,1)_{\frac{2}{3}}$	$\begin{array}{c} D \\ (3,1)_{-\frac{1}{3}} \end{array}$	Q_1 $(3,2)_{\frac{1}{6}}$	Q (3,2)	$5)_{-\frac{5}{6}}$ (3)	Q_7 $(3,2)_{\frac{7}{6}}$ (3)	T_1 $(3)_{-\frac{1}{3}}$	T_2 (3,3) _{2/3}
\mathcal{B} $(1,1)_0$	$\frac{\mathcal{B}_1}{(1,1)_1}$	\mathcal{W} $(1,3)_0$	\mathcal{W}_1 $(1,3)_1$	\mathcal{G} $(8,1)_0$	\mathcal{G}_1 $(8,1)_1$	\mathcal{H} $(8,3)_0$	$\begin{array}{c} \mathcal{L}_1\\ (1,2)_{\frac{1}{2}} \end{array}$
$\mathcal{L}_3 \\ (1,2)_{-\frac{3}{2}}$	$\mathcal{U}_2 \\ (3,1)_{\frac{2}{3}}$	\mathcal{U}_{5} (3,1) _{5/3}	$\begin{array}{c} \mathcal{Q}_1 \\ (3,2)_{\frac{1}{6}} \end{array}$	Q_5 (3,2) _{-$\frac{5}{6}$}	\mathcal{X} $(3,3)_{rac{2}{3}}$	$\frac{\mathcal{Y}_1}{(\bar{6},2)_{\frac{1}{6}}}$	$\frac{\mathcal{Y}_5}{(\bar{6},2)_{-\frac{5}{\bar{6}}}}$

De Blas, Criado, Perez-Victoria, Santiago, 1711.10391

Dictionary at one-loop

• Current experimental precision needs one-loop matching.

- Significant progress in the past few years in the development of automatic tools to perform matching at one-loop.
 - CoDEx/Matchete Functional.

Das Bakshi, Chakrabortty, Kumar Patra, 1808.04403 Fuentes-Martín, König, Pagès, Thomsen, Wilsch, 2212.04510

- Matchmakereft Diagrammatic. Carmona, Lazopoulos, Olgoso, Santiago, 2112.10787
- However, creating a dictionary at this order is not immediate infinite completions.

The dictionary – first iteration

- Consider operators with leading contribution at one-loop (weakly coupled renormalizable UV)
- Limit UV theory to heavy scalars and fermions with renormalizable interactions

X^3	X^2H^2	$\psi^2 X H + ext{h.c.}$
$\mathcal{O}_{3G} = f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$\mathcal{O}_{HG} = G^A_{\mu\nu} G^{A\mu\nu} H^\dagger H$	$\mathcal{O}_{uG} = (\overline{q}T^A\sigma^{\mu\nu}u)\widetilde{H}G^A_{\mu\nu}$
$\mathcal{O}_{\widetilde{3G}} = f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$\mathcal{O}_{H\widetilde{G}} = \widetilde{G}^{A}_{\mu\nu} G^{A\mu\nu} H^{\dagger} H$	$\mathcal{O}_{uW} = (\overline{q}\sigma^{\mu\nu}u)\sigma^I\widetilde{H}W^I_{\mu\nu}$
$\mathcal{O}_{3W} = \epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$\mathcal{O}_{HW} = W^{I}_{\mu\nu} W^{I\mu\nu} H^{\dagger} H$	$\mathcal{O}_{uB} = (\overline{q}\sigma^{\mu\nu}u)\widetilde{H}B_{\mu\nu}$
$\mathcal{O}_{\widetilde{3W}} = \epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$\mathcal{O}_{H\widetilde{W}} = \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu} H^{\dagger} H$	$\mathcal{O}_{dG} = (\overline{q}T^A\sigma^{\mu\nu}d)HG^A_{\mu\nu}$
	$\mathcal{O}_{HB} = B_{\mu\nu}B^{\mu\nu}H^{\dagger}H$	$\mathcal{O}_{dW} = (\overline{q}\sigma^{\mu\nu}d)\sigma^{I}HW^{I}_{\mu\nu}$
	$\mathcal{O}_{H\widetilde{B}} = \widetilde{B}_{\mu\nu} B^{\mu\nu} H^{\dagger} H$	$\mathcal{O}_{dB} = (\overline{q}\sigma^{\mu\nu}d)HB_{\mu\nu}$
	$\mathcal{O}_{HWB} = W^{I}_{\mu\nu} B^{\mu\nu} H^{\dagger} \sigma^{I} H$	$\mathcal{O}_{eW} = (\bar{\ell} \sigma^{\mu\nu} e) \sigma^I H W^I_{\mu\nu}$
	$\mathcal{O}_{H\widetilde{W}B} = \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}H^{\dagger}\sigma^{I}H$	$\mathcal{O}_{eB} = (\overline{\ell} \sigma^{\mu\nu} e) H B_{\mu\nu}$

$$\begin{aligned} \mathcal{L}_{\text{UV}} = & \delta_{\Psi_a} \bar{\Psi}_a \Big[i \not{D} - M_{\Psi_a} \Big] \Psi_a + \delta_{\Phi_a} \Big[|D_\mu \Phi_a|^2 - M_{\Phi_a}^2 |\Phi_a|^2 \Big] \\ &+ \sum_{\chi = L, R} \Big[Y_{abc}^{\chi} \overline{\Psi}_a P_{\chi} \Psi_b \Phi_c + \widetilde{Y}_{abc}^{\chi} \overline{\Psi}_a P_{\chi} \Psi_b \Phi_c^{\dagger} \\ &+ X_{abc}^{\chi} \overline{\Psi^c}_a P_{\chi} \Psi_b \Phi_c + \widetilde{X}_{abc}^{\chi} \overline{\Psi^c}_a P_{\chi} \Psi_b \Phi_c^{\dagger} + \text{h.c.} \Big] \\ &+ \Big[\kappa_{abc} \Phi_a \Phi_b \Phi_c + \kappa'_{abc} \Phi_a \Phi_b \Phi_c^{\dagger} + \lambda_{abcd} \Phi_a \Phi_b \Phi_c \Phi_d \\ &+ \lambda'_{abcd} \Phi_a \Phi_b \Phi_c \Phi_d^{\dagger} + \lambda''_{abcd} \Phi_a \Phi_b \Phi_c^{\dagger} \Phi_d^{\dagger} + \text{h.c.} \Big], \end{aligned}$$

Gauge structure of UV couplings kept arbitrary. Match using matchmakereft

WCs are therefore given in terms of UV couplings and Clebsch-Gordon tensors.

$$\alpha_{e\gamma}^{2,2} = \frac{iN_c e}{4} y_M y_F y_b^R \sum_{IJ} T_{I2J} \left[\gamma_{\Psi} T_{I'I}^{\gamma,\Psi} T_{2JI'}^{\prime} + \gamma_{\Phi} T_{JJ'}^{\gamma,\Phi} T_{2IJ'}^{\prime} \right]$$

The next step is to specify **Quantum numbers of UV scenario** - **GroupMath** computes possible CGs

Fonseca 2011.01764

Dictionary can be used through the Mathematica package: **SOLD (Smeft One-Loop Dictionary)**

Dictionary can be used in two directions:

Bottom-up: Which UV models generate a specific Wilson Coefficient?

Top-Down: Which Wilson coefficients are generated by a specific UV model?

 $\mathcal{O}_{dG} = \left(\bar{q}_L \sigma^{\mu\nu} T_A d_R\right) \phi G^A_{\mu\nu}$

Bottom-up: Which UV models generate a specific Wilson Coefficient? Which restrictions?

Out[3]//MatrixForm=

Field Content	SU(3) & SU(2)	U(1)
$\{\phi 1\}$	$\left\{ \phi 1 ightarrow \mathbf{\overline{3}} \otimes 1 ight\}$	$\left\{ Y_{\phi 1} \rightarrow \frac{1}{3} \right\}$
$\{\phi 1\}$	$ig \{ \phi 1 ightarrow \mathbf{\overline{3}} \otimes 1 ig \}$	$\left\{ Y_{\phi \mathtt{l}} ightarrow \frac{\mathtt{4}}{\mathtt{3}} ight\}$
$\{\phi 1, \phi 2\}$	$\left\{ \phi 1 ightarrow 8 \otimes 2 , \phi 2 \otimes \overline{\phi 2} \supset 8 \otimes 3 ight\}$	$\left\{ Y_{\phi 1} ightarrow - rac{1}{2} , Y_{\phi 2} ight\}$
$\{\phi 1, \psi 1\}$	$\left\{\psi1\otimes\overline{\phi}1\supset\mathbf{\overline{3}}\otimes1 ight\}$	$\left\{ Y_{\psi \mathtt{l}} ightarrow rac{\mathtt{l}}{\mathtt{3}} + Y_{\phi \mathtt{l}} ight\}$
$\{\phi 1, \psi 1\}$	$\left\{\psi1\otimes\overline{\phi}\mathbf{\overline{1}}\supset\mathbf{\overline{3}}\otimes2 ight\}$	$\left\{ Y_{\psi \mathtt{l}} ightarrow - rac{\mathtt{l}}{\mathtt{6}} + Y_{\phi \mathtt{l}} ight\}$
$\{\phi 1, \psi 1, \psi 2\}$	$\left\{\psi1\otimes\overline{\phi1}\supset\overline{3}\otimes2,\psi1\otimes\psi2\supset1\otimes2,\psi2\otimes\phi1\supset3\otimes1\right\}$	$\left\{Y_{\psi1} \rightarrow -\frac{1}{6} + Y_{\phi1} \text{, } Y_{\psi2} \rightarrow -\frac{1}{3} - Y_{\phi1}\right\}$
$\{\phi 1, \psi 1, \psi 2\}$	$\left\{\psi1\otimes\overline{\phi}\mathbf{I}\supset\mathbf{\overline{3}}\otimes2,\psi2\otimes\overline{\psi}\mathbf{I}\supset1\otimes2,\psi2\otimes\overline{\phi}\mathbf{I}\supset\mathbf{\overline{3}}\otimes1\right\}$	$\left\{ Y_{\psi \texttt{l}} \rightarrow -\frac{1}{6} + Y_{\phi \texttt{l}} \text{,} Y_{\psi \texttt{2}} \rightarrow \frac{1}{3} + Y_{\phi \texttt{l}} \right\}$

 $\mathcal{O}_{dG} = \left(\bar{q}_L \sigma^{\mu\nu} T_A d_R\right) \phi G^A_{\mu\nu}$

Bottom-up: Which UV models generate a specific Wilson Coefficient? Which Quantum Numbers?

```
\label{eq:listofmodels[1, 145]];} \end{tabular} modelQNs = ListValidQNs[listofmodels[1, 145]]; \\ \end{tabular} Print["Model restriction :", listofmodels[1, 145], "\nList of Models:\n", \\ MatrixForm[Join[Take[modelQNs, {1, 3}], {{"...", "...", "...."}}, Take[modelQNs, {-3, -1}]]]] \\ \end{tabular} Model restriction : \left\{ \{\phi 1, \psi 1, \psi 2\}, \{\psi 1 \otimes \overline{\phi} 1 \supset 3 \otimes 2, \psi 1 \otimes \psi 2 \supset 1 \otimes 2, \psi 2 \otimes \phi 1 \supset 3 \otimes 1 \}, \{Y_{\psi 1} \rightarrow -\frac{1}{6} + Y_{\phi 1}, Y_{\psi 2} \rightarrow -\frac{1}{3} - Y_{\phi 1} \} \right\} \\ \end{tabular} List of Models:
```

$\phi 1 \rightarrow 1 \otimes 1 \otimes Y_{\phi 1}$	$\psi 1 \rightarrow \mathbf{\overline{3}} \otimes 2 \otimes \left(-\frac{1}{6} + \mathbf{Y}_{\phi 1}\right)$	$\psi 2 \rightarrow 3 \otimes 1 \otimes \left(-\frac{1}{3} - Y_{\phi 1}\right)$
$\phi 1 \rightarrow 1 \otimes 2 \otimes Y_{\phi 1}$	$\psi 1 \rightarrow \overline{3} \otimes 1 \otimes \left(-\frac{1}{6} + \mathbf{Y}_{\phi 1}\right)$	$\psi 2 \rightarrow 3 \otimes 2 \otimes \left(-\frac{1}{3} - Y_{\phi 1}\right)$
$\phi 1 \rightarrow 1 \otimes 2 \otimes \mathbf{Y}_{\phi 1}$	$\psi 1 \rightarrow \mathbf{\overline{3}} \otimes 3 \otimes \left(-\frac{1}{6} + \mathbf{Y}_{\phi 1}\right)$	$\psi 2 \rightarrow 3 \otimes 2 \otimes \left(-\frac{1}{3} - Y_{\phi 1}\right)$
$\phi \texttt{l} \rightarrow \textbf{15'} \otimes \textbf{4} \otimes \textbf{Y}_{\phi \texttt{l}}$	$\psi 1 \rightarrow 10 \otimes 3 \otimes \left(-\frac{1}{6} + \mathbf{Y}_{\phi 1}\right)$	$\psi 2 \rightarrow \mathbf{\overline{10}} \otimes 4 \otimes \left(-\frac{1}{3} - Y_{\phi 1}\right)$
$\phi \textbf{l} \rightarrow \textbf{15'} \otimes \textbf{4} \otimes \textbf{Y}_{\phi \textbf{l}}$	$\psi 1 \rightarrow 10 \otimes 5 \otimes \left(-\frac{1}{6} + Y_{\phi 1} \right)$	$\psi 2 \rightarrow \overline{10} \otimes 4 \otimes \left(-\frac{1}{3} - Y_{\phi 1} \right)$
$\phi \textbf{1} \rightarrow \textbf{15'} \otimes \textbf{5} \otimes \textbf{Y}_{\phi \textbf{1}}$	$\psi 1 \rightarrow 10 \otimes 4 \otimes \left(-\frac{1}{6} + \mathbf{Y}_{\phi 1}\right)$	$\psi 2 \rightarrow 10 \otimes 5 \otimes \left(-\frac{1}{3} - \mathbf{Y}_{\phi 1}\right)$

Top-Down: Which Wilson coefficients are generated by a specific UV model?

```
\begin{split} & \text{In}[5]:= \text{NiceOutput}[\\ & \text{Limit}[\\ & \text{Match2Warsaw}[alphaOdG[i, j], \{Sa \rightarrow \{1, 1, Y1\}, Fa \rightarrow \{3, 2, (1/6) - Y1\},\\ & \text{Fb} \rightarrow \{3, 1, -(1/3) - Y1\}\}] \ /. \ L1[qLbar, dR, phi][\_] \rightarrow 0 \ // \ FullSimplify,\\ & \{\text{MFa} \rightarrow \text{MSa}, \text{MFb} \rightarrow \text{MSa}\}], \ True]\\ & \{g3 \rightarrow g_3, \text{MSa} \rightarrow \text{M}_{Sa}, \text{L1}[\text{Fabar}, \text{Fb}, phi, L] \rightarrow \lambda^{[L]}_{\overline{\text{Fa}}, \text{Fb}, \phi}, \text{L1}[\text{Fabar}, \text{Fb}, phi, R] \rightarrow \lambda^{[R]}_{\overline{\text{Fa}}, \text{Fb}, \phi},\\ & \text{L1}[qLbar, \text{Fa}, \text{Sa}][i] \rightarrow \lambda_{\overline{qL}, \text{Fa}, \text{Sa}}^{[i]}, \ \text{L1bar}[dRbar, \text{Fb}, \text{Sa}][j] \rightarrow \overline{\lambda_{d\overline{R}, \text{Fb}, \text{Sa}}}^{[j]} \}\\ & \text{Out}[5]= -\frac{g_3 \left(\lambda^{[L]}_{\overline{\text{Fa}}, \text{Fb}, \phi} - 3 \lambda^{[R]}_{\overline{\text{Fa}}, \text{Fb}, \phi}\right) \lambda_{\overline{qL}, \text{Fa}, \text{Sa}}^{[i]} \overline{\lambda_{d\overline{R}, \text{Fb}, \text{Sa}}}^{[j]}}{384 \pi^2 \text{M}_{\text{Sa}}^2} \end{split}
```

The dictionary – compute all WCs

Create Lagrangean of UV model

Automatic creation of FeynRules model

 $\label{eq:lin2} \end{tabular} \end{tabular} $$ \mbox{In[2]:= CreateLag[{Sa \rightarrow \{\{0, 0\}, 1, Y1\}, Fa \rightarrow \{\{0, 1\}, 2, -(1 \slashed{b}), Y1\}, Fb \rightarrow \{\{1, 0\}, 1, -(1 \slashed{J}), -Y1\}}] $$$

 $\begin{aligned} & \mathsf{Out}[2]= \left\{\mathsf{Sa}^2 \,\mathsf{Sabar}^2 \,\lambda_{\overline{\mathsf{Sa}},\overline{\mathsf{Sa}},\mathsf{Sa},\mathsf{Sa}} + \mathsf{Sa} \,\mathsf{DRbar}[\mathsf{sp1},\mathsf{ff0},\mathsf{cc0}] \cdot\mathsf{Fb}[\mathsf{sp1},\mathsf{cc1}] \,\lambda_{\overline{\mathsf{dR}},\mathsf{Fb},\mathsf{Sa}}^{[\mathsf{ff0}]} \,\mathsf{TC51}[\mathsf{cc0},\mathsf{cc1}] + \\ & \mathsf{Sa} \,\mathsf{Sabar} \,\mathsf{Phi}[\mathsf{ss2}] \times \mathsf{Phibar}[\mathsf{ss0}] \,\lambda_{\overline{\phi},\overline{\mathsf{Sa}},\phi,\mathsf{Sa}} \,\mathsf{TS11}[\mathsf{ss0},\mathsf{ss2}] + \\ & \mathsf{CC}[\mathsf{Fabar}[\mathsf{sp1},\mathsf{ss0},\mathsf{cc0}]] \cdot\mathsf{left}[\mathsf{Fb}[\mathsf{sp1},\mathsf{cc1}]] \times \mathsf{Phi}[\mathsf{ss2}] \,\lambda^{[\mathsf{L}]}_{\mathsf{Fa},\mathsf{Fb},\phi} \,\mathsf{TC31}[\mathsf{cc0},\mathsf{cc1}] \times \mathsf{TS31}[\mathsf{ss0},\mathsf{ss2}] + \\ & \mathsf{CC}[\mathsf{Fabar}[\mathsf{sp1},\mathsf{ss0},\mathsf{cc0}]] \cdot\mathsf{right}[\mathsf{Fb}[\mathsf{sp1},\mathsf{cc1}]] \times \mathsf{Phi}[\mathsf{ss2}] \,\lambda^{[\mathsf{R}]}_{\mathsf{Fa},\mathsf{Fb},\phi} \,\mathsf{TC31}[\mathsf{cc0},\mathsf{cc1}] \times \mathsf{TS31}[\mathsf{ss0},\mathsf{ss2}] + \\ & \mathsf{Sabar} \,\mathsf{CC}[\mathsf{Fabar}[\mathsf{sp1},\mathsf{ss0},\mathsf{cc0}]] \cdot\mathsf{right}[\mathsf{Fb}[\mathsf{sp1},\mathsf{cc1}]] \times \mathsf{Phi}[\mathsf{ss2}] \,\lambda^{[\mathsf{R}]}_{\mathsf{Fa},\mathsf{Fb},\phi} \,\mathsf{TC31}[\mathsf{cc0},\mathsf{cc1}] \times \mathsf{TS31}[\mathsf{ss0},\mathsf{ss2}] + \\ & \mathsf{Sabar} \,\mathsf{CC}[\mathsf{Fabar}[\mathsf{sp1},\mathsf{ss0},\mathsf{cc0}]] \cdot\mathsf{right}[\mathsf{Fb}[\mathsf{sp1},\mathsf{cc1}]] \times \mathsf{Phi}[\mathsf{ss2}] \,\lambda^{[\mathsf{R}]}_{\mathsf{Fa},\mathsf{Fb},\phi} \,\mathsf{TC31}[\mathsf{cc0},\mathsf{cc1}] \times \mathsf{TS31}[\mathsf{ss0},\mathsf{ss2}] + \\ & \mathsf{Sabar} \,\mathsf{CC}[\mathsf{Fabar}[\mathsf{sp1},\mathsf{ss1},\mathsf{cc1}]] \cdot\mathsf{QL}[\mathsf{sp1},\mathsf{ss2},\mathsf{ff0},\mathsf{cc2}] \,\lambda_{\overline{\mathsf{Sa}},\mathsf{Fa},\mathsf{qL}}^{[\mathsf{ff0}]} \,\mathsf{TC41}[\mathsf{cc1},\mathsf{cc2}] \times \mathsf{TS41}[\mathsf{ss1},\mathsf{ss2}], \\ & \{\mathsf{TS11} \rightarrow \{\{\mathsf{1},\mathsf{0}\},\{\mathsf{0},\mathsf{1}\}\}\},\mathsf{TC31} \rightarrow \{\{\mathsf{1},\mathsf{0},\mathsf{0}\},\{\mathsf{0},\mathsf{1},\mathsf{0}\},\{\mathsf{0},\mathsf{0},\mathsf{1}\}\}\},\mathsf{TS31} \rightarrow \{\{\mathsf{0},\mathsf{-1}\},\{\mathsf{1},\mathsf{0}\}\}, \\ & \mathsf{TC41} \rightarrow \{\{\mathsf{1},\mathsf{0},\mathsf{0}\},\{\mathsf{0},\mathsf{1},\mathsf{0}\},\{\mathsf{0},\mathsf{0},\mathsf{1}\}\}\},\mathsf{TS41} \rightarrow \{\{\mathsf{0},\mathsf{-1}\},\{\mathsf{1},\mathsf{0}\}\},\mathsf{TC51} \rightarrow \{\mathsf{1},\mathsf{0},\mathsf{0}\},\{\mathsf{0},\mathsf{1},\mathsf{0}\},\{\mathsf{0},\mathsf{0},\mathsf{1}\}\}\}\right\} \end{aligned}$

Run Matchmakereft directly

In[9]:= CompleteOneLoopMatching[{Sa->{{0,0},1,Y1},Fa->{{0,1},2,-(1/6)+Y1}, Fb->{{1,0},1,-(1/3)-Y1}},"model"]

Phenomenology

• Next step would be to use **matchmakereft** to compute the matching results and **smelli** to verify the viability of some parameter points

The dictionary – general results

$$\begin{split} & \frac{X^3}{\mathcal{O}_{3G} = f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}} \\ & \mathcal{O}_{3G} = f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}} \\ & \mathcal{O}_{3W} = \epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho} \\ & \mathcal{O}_{3W} = \epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{L\mu}_{\rho} \\ & \mathcal{O}_{3W} = \epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\mu} \\ & \mathcal{O}_{3W} = \epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\mu} \\ & \mathcal{O}_{3W} = \epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\mu}_{\mu} W^{J\mu}_{\mu} W^{J\mu}_{\mu} \\ & \mathcal{O}_{3W} = \epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\mu}_{\mu} \\ & \mathcal{O}_{3W} = \epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\mu}_{\mu} W^{J\mu}_{\mu} \\ & \mathcal{O}_{3W} = \epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\mu}_{\mu} W^{J\mu}_{\mu} \\ & \mathcal{O}_{3W} = \epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\mu}_{\mu} \\ & \mathcal{O}_{3W} = \epsilon^{IJK} \widetilde{W}^{I\mu}_{\mu} W^{J\mu}_{\mu} \\ & \mathcal{O}_{3W} = \epsilon^$$

Conclusions

- The effective approach allows us to parametrize low-energy observables through WCs with no mention of UV
- UV/IR dictionaries allow us to efficiently connect these WCs (and therefore observables) with ALL possible UV origins
- Dictionaries can work as a guiding principle
- Since one-loop effects are relevant, dictionary at this order should be computed: SOLD

Thanks

guilherme.guedes@desy.de