# Feynman Integrals from Integrability and Geometry

FLORIAN LOEBBERT



Bethe Center For Theoretical Physics University of Bonn

based on Phys.Rev.Lett. 130 4, 2023 + work in progress with C. Duhr, A. Klemm, C. Nega, F. Porkert

> DESY Theory Workshop 2023 Hamburg

## Motivation

Feynman integrals needed for phenomenology

- 1) in practice: study differential equations
- 2) express result in terms of special functions (polylogs, elliptic ...)

This talk: input from two string-inspired areas



- 1) AdS/CFT integrability  $\rightarrow$  differential equations
- 2) Calabi-Yau geometry  $\rightarrow$  special functions

Laboratory to study higher loop structure: conformal fishnet integrals



# **Fishnet Integrals and Integrability**

#### "FISHING-NET" DIAGRAMS AS A COMPLETELY INTEGRABLE SYSTEM

#### A.B. ZAMOLODCHIKOV

The Academy of Sciences of the USSR, L,D, Landau Institute for Theoretical Physics, Chernogolovka, USSR

Received 29 July 1980



#### "FISHING-NET" DIAGRAMS AS A COMPLETELY INTEGRABLE SYSTEM

#### A.B. ZAMOLODCHIKOV

The Academy of Sciences of the USSR, L.D. Landau Institute for Theoretical Physics, Chernogolovka, USSR

Received 29 July 1980



## Integrability and Conformal Symmetry



## Integrability and Conformal Symmetry



$$\int_{10}^{2} \frac{\mathrm{d}^{D} x_{0}}{x_{10}^{2a} x_{20}^{2b} x_{30}^{2c}} \stackrel{a+b+c=D}{=} \frac{X_{abc}}{x_{12}^{2c'} x_{23}^{2a'} x_{31}^{2b'}} \simeq \int_{10}^{2} \int_{0}^{2} \frac{x_{abc}}{x_{10}^{2c'} x_{20}^{2a'} x_{31}^{2b'}} \stackrel{a'}{=} \int_{0}^{2} \frac{x_{abc}}{x_{10}^{2c'} x_{20}^{2a'} x_{31}^{2a'}} \stackrel{a'}{=} \int_{0}^{2}$$

## Integrability and Conformal Symmetry



Do these graphs look like fishnets?









### **Fishnet Graphs as Correlation Functions**

Double-scaling limit in AdS/CFT:



$$\frac{\mathcal{N} = 4 \text{ SYM}}{\mathcal{L}_{\mathcal{N}=4}} \xrightarrow{X Y \to e^{i\gamma_j(\dots)}XY} \xrightarrow{\gamma-\text{Deformation}} \frac{Y \text{-Deformation}}{\mathcal{L}_{\mathcal{N}=4}^{\gamma}} \xrightarrow{g \to 0, \ \gamma_3 \to i\infty} \mathcal{L}_{\mathsf{F}}$$

Resulting bi-scalar fishnet theory:

Gürdoğan Kazakov 2015

$$\mathcal{L}_{\mathsf{F}} = N_{\mathsf{c}} \operatorname{tr} \left( -\partial_{\mu} \bar{X} \partial^{\mu} X - \partial_{\mu} \bar{Z} \partial^{\mu} Z + \xi^2 \bar{X} \bar{Z} X Z \right)$$

Correlators given by single fishnet Feynman graphs.



## **Fishnet Graphs as Correlation Functions**

Double-scaling limit in AdS/CFT:



$$\frac{\mathcal{N} = 4 \text{ SYM}}{\mathcal{L}_{\mathcal{N}=4}} \xrightarrow{X Y \to e^{i\gamma_j(\dots)}XY} \qquad \frac{\gamma \text{-Deformation}}{\mathcal{L}_{\mathcal{N}=4}^{\gamma}} \qquad \frac{g \to 0, \ \gamma_3 \to i\infty}{\xi = g e^{-i\gamma_3/2} \text{ fix}} \qquad \frac{F \text{ishnets}}{\mathcal{L}_{\mathsf{F}}}$$

Resulting bi-scalar fishnet theory:

Gürdoğan Kazakov 2015

$$\mathcal{L}_{\mathsf{F}} = N_{\mathsf{c}} \operatorname{tr} \left( -\partial_{\mu} \bar{X} \partial^{\mu} X - \partial_{\mu} \bar{Z} \partial^{\mu} Z + \xi^2 \bar{X} \bar{Z} X Z \right)$$

Correlators given by single fishnet Feynman graphs.

Fishnet integrals inherit conformal Yangian symmetry  $Y[\mathfrak{so}(1,5)]$ :



## Integrability and the Yangian

The Yangian is an infinite dimensional extension of a Lie algebra g.
 It underlies rational quantum integrable models (rational S-matrix).



#### Examples:

- $\blacktriangleright \mathsf{AdS}/\mathsf{CFT}: \mathfrak{g} = \mathfrak{psu}(2,2|4)$
- Fishnet integrals:  $\mathfrak{g} = \mathfrak{so}(1, D+1)$

#### Infinite extension of conformal algebra also beyond D = 2 dimensions.

### Yangian PDEs for Feynman Integrals

Level 0:  

$$J^{a} = \sum_{k=1}^{n} J_{k}^{a} \quad \text{with} \quad J^{a} \in \begin{cases} D = -ix_{\mu}\partial^{\mu} - i\Delta, \\ L_{\mu\nu} = ix_{\mu}\partial_{\nu} - ix_{\nu}\partial_{\mu}, \\ P_{\mu} = -i\partial_{\mu}, \\ K_{\mu} = ix^{2}\partial_{\mu} - 2ix_{\mu}x^{\nu}\partial_{\nu} - 2i\Delta x_{\mu}. \end{cases}$$

 $\Rightarrow$   $I_n = V_n \phi$  with  $\phi(z_1, z_2, \dots)$  function of conformal cross ratios.

**Level 1:** additional non-local generators  $\widehat{J}^{a} = f^{a}{}_{bc} \sum_{j < k} J^{c}_{j} J^{b}_{k}$  e.g.  $\widehat{P}^{\mu} = \sum_{j < k=1}^{n} \left[ \left( L^{\mu\nu}_{j} + \eta^{\mu\nu} D_{j} \right) P_{k,\nu} - (j \leftrightarrow k) \right] + \sum_{k=1}^{n} s_{k} P_{k}$ Yangian invariance:  $0 = \widehat{P}^{\mu} I_{n} = V_{n} \sum_{j < k=1}^{n} \frac{x^{\mu}_{jk}}{x^{2}_{jk}} PDE_{jk} \phi$ 

Leads to system of Yangian PDEs in the cross ratios: [FL, Müller Münkler 2019]  $\mathrm{PDE}_{jk} \ \phi = 0, \qquad 1 \leq j < k \leq n.$ 

# **Fishnet Integrals in Lower Dimensions**

## Conformal Fishnets in 1D and 2D

Fishnet integrals in lower dimensions with conformal choice of powers in propagators  $|x|^{-2a_j}$ :



Integrals are correlators in *D*-dimensional fishnet theory: [Kazakov Olivucci 2018]

$$\mathcal{L} = N_c \operatorname{tr} \left[ X (-\partial_\mu \partial^\mu)^{\frac{D}{4}} \bar{X} + Z (-\partial_\mu \partial^\mu)^{\frac{D}{4}} \bar{Z} + \xi^2 X Z \bar{X} \bar{Z} \right]$$

Simplest example: Cross integral in 1D

$$\xrightarrow[x_1]{x_1} \xrightarrow[x_2]{x_1} = \int \frac{\mathrm{d}x_0}{x_{10}^{2\frac{1}{4}} x_{20}^{2\frac{1}{4}} x_{30}^{2\frac{1}{4}} x_{40}^{2\frac{1}{4}}} \xrightarrow[x_{10}]{\operatorname{conf. transf.}} \int \frac{\mathrm{d}x}{\sqrt{x(x-1)(x-z)}} = \int \frac{\mathrm{d}x}{y}$$

Natural geometry given by Legendre family of elliptic curves

$$y^2 = x(x-1)(x-z) = P_{\rm cross}(x,z)$$



### 1D Box from Yangian Bootstrap

Consider Yangian over 1D conformal algebra  $Y[\mathfrak{sl}(2,\mathbb{R})]$  on one-loop box:

$$I_4 = \underbrace{\begin{array}{c} x_1 \\ x_4 \\ x_3 \end{array}}_{x_3} = \frac{1}{\sqrt{x_{13}x_{24}}}\phi(z)$$

Yangian differential equation (= Legendre equation):

$$0 = \phi(z) + 4(2z - 1)\phi'(z) + 4(z - 1)z\phi''(z), \qquad z = \frac{x_{12}x_{34}}{x_{13}x_{24}}$$

Two solutions in terms of elliptic K integral:  $K(z) = \int_0^{\pi/2} d\theta \frac{1}{\sqrt{1-z\sin^2\theta}}$ .

|                                                       | 1 power series                 | 1 single-log solution                       |  |  |
|-------------------------------------------------------|--------------------------------|---------------------------------------------|--|--|
|                                                       | $K(z) = \sum_{j} c_{j} z^{j}$  | $K(1-z) = \log(z) \sum_{j} c_j z^j + \dots$ |  |  |
| For $ec{\Pi}=(K(z),K(1-z))$ integral must be given by |                                |                                             |  |  |
|                                                       | $\phi(z) = ec v \cdot ec \Pi.$ |                                             |  |  |

Fix linear combination using e.g. numerics to find  $\vec{v}=(4,4).$   $_{\rm Florian\ Loebbert}$ 

## 1D Double Box from Yangian Bootstrap

Two loops:

$$I_6 = \underbrace{\begin{smallmatrix} 3 & 4 \\ 2 & & -5 \\ 1 & & 6 \end{smallmatrix}}_{1 & 0 & -5} = \frac{1}{\sqrt{x_{14}x_{26}x_{35}}}\phi(z_1, z_2, z_3)$$

Full set of PDEs from Yangian and permutation symmetries  $\sigma$ :

$$\widehat{\mathbf{P}}I_6 = 0, \qquad (\sigma \circ \widehat{\mathbf{P}})I_6 = 0$$

Frobenius Method: Ansatz yields 5-dimensional solution vector  $\vec{\Pi}$ 

| 1 power series                         | 3 single-log                                     | 1 double-log solution                                |
|----------------------------------------|--------------------------------------------------|------------------------------------------------------|
| $\sum_{jkl} c_{jkl} z_1^j z_2^k z_3^l$ | $\log(z_a) \sum_{jkl} c_{jkl} z_1^j z_2^k z_3^l$ | $\log(z_a)\log(z_b)\sum_{jkl}c_{jkl}z_1^jz_2^kz_3^l$ |

Fix linear combination e.g. by using numerics:

$$\phi(z_1, z_2, z_3) = \vec{v} \cdot \vec{\Pi}$$

 $\ell = 1$ : elliptic curve,  $\ell = 2$  geometry?  $\rightarrow$  need Calabi-Yaus

Florian Loebbert

## Mini Calabi-Yau Overview



A <u>Calabi–Yau  $\ell$ -fold</u> is an  $\ell$ -dimensional complex Kähler manifold with vanishing first Chern class.

Integrating  $\Omega$  over the cycles  $\Gamma_j$  of the CY yields a vector  $\vec{\Pi}$  of associated periods  $\Pi_j(z)=\int_{\Gamma_j}\Omega$ 

For every family of CYs there is a set of differential operators, the Picard–Fuchs Ideal (PFI), whose solutions are exactly the periods.

Example: 1D Box Integral (CY 1-fold = Elliptic Curve) Triplet  $(\mathcal{E}, da = \frac{dx}{y}, A da \wedge d\bar{a})$ Periods  $\vec{\Pi} = (K(z), K(1-z))$ PFI =  $\{1 + 4(2z - 1)\partial_z + 4z(z - 1)\partial_z^2\}$ 

## General Fishnets in 1D





| Loops    | 1              | 2          | 3         |  |
|----------|----------------|------------|-----------|--|
| Geometry | Elliptic Curve | K3 surface | CY 3-fold |  |
| Periods  | 1 1            | 1 3 1      | 1 5 5 1   |  |

Generic fishnets satisfy Calabi-Yau condition:



▶ integrand  $\frac{1}{P_G^{(c-1)/c}}$  with polynomial  $P_G$  of degree  $n = \frac{2c}{c-1}$ 

Four-point fishnets have c = 2 and n = 4.

#### Conjecture

Yangian with permutations generates Picard–Fuchs ideal of differential operators with Calabi–Yau periods as solutions!

# From 1 to 2 Dimensions

## Double Copy in 2D

Split 2D Yangian into holomorphic and anti-holomorphic part:

 $Y[\mathfrak{sl}(2,\mathbb{R})] \oplus \overline{Y[\mathfrak{sl}(2,\mathbb{R})]}$ 

**Double Copy Structure:** Same Yangian invariants  $\vec{\Pi}$  as in 1D:

 $\phi(z) = \vec{\Pi}^\dagger \cdot \mathbf{\Sigma} \cdot \vec{\Pi}$ 

Indeed: Box integral in 2D given by linear combination of two factorized Yangian invariants  $\begin{bmatrix} Derkachov, Kazakov \\ Olivucci 2018 \end{bmatrix} \begin{bmatrix} Corcoran, FL \\ Miczajka 2021 \end{bmatrix}$ :

$$\begin{split} \phi(z,\bar{z}) &= 4 \begin{bmatrix} K(z)K(1-\bar{z}) + K(1-z)K(\bar{z}) \end{bmatrix} \\ &= 4i \begin{pmatrix} K(z) & iK(1-z) \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} K(\bar{z}) \\ -iK(1-\bar{z}) \end{pmatrix} \end{split}$$

What is the role of the matrix  $\Sigma$ ?

### Intersection Matrix, Kähler Potential, Volume

Duhr, Klemm, FL Nega, Porkert 2022

The intersection matrix Σ of the Calabi–Yau defines a natural bilinear pairing of the periods. We observe

$$\phi(z) = \vec{\Pi}^{\dagger} \cdot \Sigma \cdot \vec{\Pi} = e^{-V}$$

Here V denotes the Kähler potential.

Identify fishnet graph G with Calabi-Yau volume (or quantum volume of mirror Calabi-Yau), cf. [Gross, Huybrechts] [Weigand 2019] [Weigand 2019]

$$\mathsf{Vol}(M_G) = \int_{M_G} \frac{\omega_G^\ell}{\ell!} = c \int_{M_G} \Omega_G \wedge \bar{\Omega}_G$$

# Calabi-Yaus and Basso-Dixon Formula

### Four-Point Limits of Fishnet Integrals

In 4D: Basso–Dixon (BD) found determinant representation for fishnet integrals in four-point coincidence limit of  $M \times N$  lattice  $\begin{bmatrix} Basso\\ Dixon 2017 \end{bmatrix}$ 



In 2D: generalization of  $[{^{\sf Derkachov,\ Kazakov}_{\sf Olivucci\ 2018}}]$  agrees with above structure

$$\phi_{MN} \simeq \det_{1 \le j,k \le M} \left[ (z\partial_z)^{j-1} (\bar{z}\partial_{\bar{z}})^{k-1} \partial_{\varepsilon}^{M+N-1} \big|_{M+N+1} F_{M+N}(\varepsilon,z) \big|^2 \right]_{\varepsilon=0}$$

#### How does this fit into the Calabi-Yau picture?

### Four-Point Graphs in 2D

Compact 1-/2-loop results: [Derkachov, Kazakov] [Corcoran, FL] [Duhr, Klemm, FL Olivucci 2018] [Miczajka 2021] [Duhr, Klemm, FL Nega, Porkert 2022]

Elliptic: 
$$- = \frac{4}{\pi} (K(z)K(1-\bar{z}) + K(1-z)K(\bar{z})) = \vec{\Pi}^{\dagger} \cdot \Sigma \cdot \vec{\Pi}$$

K3: 
$$- \oint = \frac{8}{\pi^2} \left( K_+ \overline{K}_- + K_- \overline{K}_+ \right)^2 = \vec{\Pi}^{\dagger} \cdot \Sigma \cdot \vec{\Pi},$$

with  $K_{\pm} = K (\frac{1}{2} \pm \frac{1}{2} \sqrt{1-z}).$ 

#### Implications of four-point limit:

- ▶ 2D  $M \times N$  Basso–Dixon integrals depend on single variable  $z \in \mathbb{C}$
- associated Picard–Fuchs ideal is generated by single differential operator L<sub>M,N</sub> that annihilates CY periods

Such differential operators are well studied in Calabi-Yau community...

## Symmetric Power of CY Operators

Duhr, Klemm, FL Nega, Porkert, to appear

#### Symmetric power:

$$\operatorname{Sym}^p L := L_{\operatorname{Sym}^p(\operatorname{Sol}(L))}$$

with Sol(L) = invariants of L

#### Example:

Differential operator relations, e.g.  $L_2 = \text{Sym}^2(L_1) \begin{bmatrix} \text{Doran}\\ 2000 \end{bmatrix} \begin{bmatrix} \text{M-Bogner}\\ 2013 \end{bmatrix}$ , are inherited by their invariants, e.g.

$$\phi_1 = - = \frac{4}{\pi} (K(z)K(1-\bar{z}) + K(1-z)K(\bar{z}))$$
  
$$\phi_2 = - = \frac{8}{\pi^2} (K_+\overline{K}_- + K_-\overline{K}_+)^2$$

#### **Exterior Power and Basso–Dixon**

**Exterior power:**  $\wedge^p L$  denotes operator of minimal degree that annihilates determinants of the form (with  $y_i$  invariants of L)

$$\begin{vmatrix} y_{i_1} & \dots & y_{i_p} \\ \theta_z y_{i_1} & \theta_z y_{i_p} \\ \vdots & \ddots & \vdots \\ \theta_z^{p-1} y_{i_1} & \dots & \theta_z^{p-1} y_{i_p} \end{vmatrix}, \quad \text{ with } \theta_z = z \partial_z.$$

#### Example:

2D BD formula equivalent to  $L_{M,N} = \wedge^M L_{M+N-1}$  [Duhr, Klemm, FL  $\bigvee W = M + N - 1$   $\phi_{M,N}(z) \simeq \det \left[\theta_{\bar{z}}^{i-1} \theta_{z}^{j-1} \phi_{W}(z)\right]_{1 \le i,j \le M} \simeq D_{I}^{(W)}(\bar{z}) \left(\Sigma_{M,N}\right)_{IJ} D_{J}^{(W)}(z)$ with  $I = (i_1, \dots, i_M)$  and  $D_{I}^{(W)} = \begin{vmatrix} \prod_{\substack{0 \le I \le W, i_1 \\ \theta_z \prod_{W, i_1} & \theta_z \prod_{W, i_M} \\ \vdots & \ddots & \vdots \\ \theta_z^{M-1} \prod_{W, i_1} \cdots & \theta_z^{M-1} \prod_{W, i_M} \end{vmatrix}$ 

Florian Loebbert

#### Basso-Dixon Formula for Calabi-Yau Volume

Observations for fishnet integrals:

- obey Basso-Dixon formula
- compute volume of Calabi-Yau

which implies

Basso-Dixon formula for Calabi-Yau volume:

$$\operatorname{Vol}(\mathcal{M}_{M,N}) = \det \left[ \bar{\vartheta}^{i-1} \vartheta^{j-1} \operatorname{Vol}(\mathcal{M}_{1,M+N-1}) \right]_{0 \le i,j \le M}$$

with a derivation  $\vartheta$ , cf. [Duhr, Klemm, FL Nega, Porkert, to appear]

$$\operatorname{Vol}\left[\begin{array}{c} \operatorname{Vol}[\] & \operatorname{Vol}[\] & \operatorname{Vol}[\] & \ldots \\ \operatorname{Vol}[\] & \operatorname{Vol}[\] & \operatorname{Vol}[\] & \ldots \end{array}\right)$$

# **Outlook: Beyond Square Fishnets**

### **Isotropic Fishnets in 2D**

Yangian symmetry also for other graph structures/propagator powers:

[Chicherin, Kazakov, FL] [FL, Müller Müller, Zhong 2017] [Münkler 2019] [Kazakov, Levkovich-Maslyuk] Mishnyakov 2023



Form of Feynman graph not unique.

### Isotropic Fishnets in 2D



Form of Feynman graph not unique.

**Example:** Two-loop three-point graph in 1D:

Duhr, Klemm, FL Nega, Porkert, in progress

$$\int \frac{\mathrm{d}x_0 \mathrm{d}x_{\bar{0}}}{x_{10}^{\frac{2}{3}} x_{20}^{\frac{2}{3}} x_{0\bar{0}}^{\frac{2}{3}} x_{3\bar{0}}^{\frac{2}{3}} x_{4\bar{0}}^{\frac{2}{3}}} = \checkmark = \int \frac{\mathrm{d}x_0}{x_{10}^{\frac{2}{3}} x_{20}^{\frac{1}{3}} x_{3\bar{0}}^{\frac{2}{3}} x_{4\bar{0}}^{\frac{2}{3}}}$$

CY condition: integrand  $\frac{1}{P_G^{(c-1)/c}}$  with polynomial of degree  $n = \frac{2c}{c-1}$ LHS: Natural geometry is singular K3 with c = n = 3

$$y^{3} = (x_{1} - x_{0})(x_{2} - x_{0})(x_{0} - x_{\bar{0}})(x_{3} - x_{\bar{0}})(x_{4} - x_{\bar{0}})$$

RHS: Natural geometry is Picard-curve:

$$y^{3} = (x_{1} - x_{0})^{2} (x_{2} - x_{0}) (x_{3} - x_{0})^{2} (x_{4} - x_{0}) \xrightarrow{\text{conf.}} (z - x_{0}) (1 - x_{0}) x_{0}^{2}$$

**Example:** Two-loop three-point graph in 1D:

Duhr, Klemm, FL Nega, Porkert, in progress

$$\int \frac{\mathrm{d}x_0 \mathrm{d}x_{\bar{0}}}{x_{10}^{\frac{2}{3}} x_{2\bar{0}}^{\frac{2}{3}} x_{3\bar{0}}^{\frac{2}{3}} x_{4\bar{0}}^{\frac{2}{3}}} = \checkmark = \checkmark = \int \frac{\mathrm{d}x_0}{x_{10}^{\frac{2}{3}} x_{2\bar{0}}^{\frac{1}{3}} x_{3\bar{0}}^{\frac{2}{3}} x_{4\bar{0}}^{\frac{2}{3}}}$$

CY condition: integrand  $\frac{1}{P_G^{(c-1)/c}}$  with polynomial of degree  $n = \frac{2c}{c-1}$ LHS: Natural geometry is singular K3 with c = n = 3

$$y^3 = (x_1 - x_0)(x_2 - x_0)(x_0 - x_{ar 0})(x_3 - x_{ar 0})(x_4 - x_{ar 0})$$

RHS: Natural geometry is Picard-curve:

$$y^{3} = (x_{1} - x_{0})^{2} (x_{2} - x_{0}) (x_{3} - x_{0})^{2} (x_{4} - x_{0}) \xrightarrow{\text{conf.}} (z - x_{0}) (1 - x_{0}) x_{0}^{2}$$

**Example:** Two-loop three-point graph in 1D:

$$\int \frac{\mathrm{d}x_0 \mathrm{d}x_{\bar{0}}}{x_{10}^{\frac{2}{3}} x_{20}^{\frac{2}{3}} x_{0\bar{0}}^{\frac{2}{3}} x_{4\bar{0}}^{\frac{2}{3}}} = \checkmark = \checkmark = \int \frac{\mathrm{d}x_0}{x_{10}^{\frac{2}{3}} x_{20}^{\frac{2}{3}} x_{3\bar{0}}^{\frac{2}{3}} x_{4\bar{0}}^{\frac{1}{3}}}$$

CY condition: integrand  $\frac{1}{P_G^{(c-1)/c}}$  with polynomial of degree  $n = \frac{2c}{c-1}$ LHS: Natural geometry is singular K3 with c = n = 3

$$y^{3} = (x_{1} - x_{0})(x_{2} - x_{0})(x_{0} - x_{\bar{0}})(x_{3} - x_{\bar{0}})(x_{4} - x_{\bar{0}})$$

RHS: Natural geometry is Picard-curve:

$$y^{3} = (x_{1} - x_{0})^{2} (x_{2} - x_{0}) (x_{3} - x_{0})^{2} (x_{4} - x_{0}) \xrightarrow{\text{conf.}} (z - x_{0}) (1 - x_{0}) x_{0}^{2}$$

**Example:** Two-loop three-point graph in 1D:

 $\int \frac{\mathrm{d}x_0 \mathrm{d}x_{\bar{0}}}{x_{10}^{\frac{2}{3}} x_{20}^{\frac{2}{3}} x_{3\bar{0}}^{\frac{2}{3}} x_{4\bar{0}}^{\frac{2}{3}}} = \checkmark = \int \frac{\mathrm{d}x_0}{x_{10}^{\frac{2}{3}} x_{20}^{\frac{2}{3}} x_{30}^{\frac{2}{3}} x_{4\bar{0}}^{\frac{2}{3}}}$ 

CY condition: integrand  $\frac{1}{P_G^{(c-1)/c}}$  with polynomial of degree  $n = \frac{2c}{c-1}$ LHS: Natural geometry is singular K3 with c = n = 3

$$y^{3} = (x_{1} - x_{0})(x_{2} - x_{0})(x_{0} - x_{\bar{0}})(x_{3} - x_{\bar{0}})(x_{4} - x_{\bar{0}})$$

RHS: Natural geometry is Picard-curve:

$$y^{3} = (x_{1} - x_{0})^{2} (x_{2} - x_{0}) (x_{3} - x_{0})^{2} (x_{4} - x_{0}) \stackrel{\text{conf.}}{\to} (z - x_{0}) (1 - x_{0}) x_{0}^{2}$$

#### $\Rightarrow$ emphasizes importance of differential equations

## Conclusions

#### Fishnet integrals are rich topic relating

- AdS/CFT integrability
- Feynman graphs
- Calabi-Yau geometry

#### Many directions to explore:

- more loops, legs, masses, dimensions
- curved space: Witten diagrams, cf. [Rigatos Zhou '22]

#### **Beyond 2 dimensions:**

- we loose holomorphic factorization, but ...
- conformal Yangian still yields building blocks for integrals [FL, Müller Münkler '19]
- underlying geometry still Calabi–Yau [...][e.g. Snowmass review] [...] Bourjaily et al. '21