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This talk is an overview of some joint work (past, present,
and future) with numerous collaborators.

Here is an incomplete list:

Ilka Brunner, Martin Cederwall, Kevin Costello, Tudor
Dimofte, Richard Eager, Chris Elliott, Owen Gwilliam,
Fabian Hahner, John Huerta, Simon Jonsson, Simone Noja,
Jakob Palmkvist, Natalie Paquette, Surya Raghavendran,
Johannes Walcher, Brian R. Williams.

I owe thanks to all of them, and to the many other people
I’ve been fortunate enough to talk with and learn from
(some of whom are in the audience).



As befits an overview talk, I’ll try and focus on what I find
exciting and what I see as important conceptual points. I
will privilege narrative at the expense of detail; apologies
in advance.

Here’s a rough plan of the talk:
1. A few words on the “derived” approach to field theory.

This will be in the background everywhere.†

2. Reminders on twisted holography and a few of the
theories that appear there. The worldsheet approach.

3. Twisted theories are to complex geometry as
supersymmetric theories are to superspace geometry.

4. What can we hope to learn about supersymmetric
physics by studying twists? (More than expected.)

5. Some lessons about M-theory and fivebranes.

†Really, this is a unifying perspective on many things we already do in QFT: BRST, on-shell
symmetries, higher-form symmetries, . . .



1 – Derived geometry is not so scary

The big idea in derived geometry is that it is generally the
wrong thing to do to explicitly impose a constraint or pass
to a quotient. This loses information. Instead, one should
work with simple, unstructured objects and produce a
cochain-level model of the object one wants to study.

Example from topology: The singular cochains of a
manifold X specify the manifold. (The boundary operator is
a recipe for gluing simplices together to reproduce X.) The
singular cohomology is far from being a perfect invariant.

Example from physics: Instead of doing the path integral
over the (complicated) space of gauge equivalence classes of
fields, we add ghosts, together with a BRST differential
that implements the gauge quotient cohomologically.



If we are interested in a structured object O, we should
replace it by a cochain complex L• of unstructured objects
that is quasi-isomorphic to O. Such a replacement is called
a resolution.

Often, we do not actually require the higher cohomology of
the derived replacement L• to vanish! More on this later.

What I mean by “object,” and by “structured,” will depend
on the context. But the vagueness is a matter of exposition;
these terms are precisely defined in a wide range of
mathematical settings.

The unstructured objects in quantum field theory are
smooth sections of vector bundles: they are (locally) free
modules over smooth functions on spacetime, with no
constraints and no gauge equivalences. (Not “free fields!”)



In the derived model, all symmetries, deformations,
constraints, and so on are treated on the same footing.
(Everything is a “local L∞ algebra.”)

A simple example: the field in perturbative abelian
Yang–Mills theory is a gauge equivalence class of
one-forms, [A] ∈Ω1/dΩ0.

The derived replacement (BRST model) is easy:

“connections:” Ω0 Ω1.d

Form degree determines ghost number.†

The degree-zero cohomology encodes gauge
transformations at infinity, which do act!

†I will use a slightly perverse convention: shifted by one.



Derived models of field theories

Of course, Yang–Mills theory isn’t just about any
connection. We need to include dynamics: our structured
object is actually an equivalence class of one-forms
satisfying d?dA= 0.

0 1 2 3

“YM connections:” Ω0 Ω1 Ωd−1 Ωd

“connections:” Ω0 Ω1.

d d?d d

d

This is a simple example of the Batalin–Vilkovisky
formalism. The symmetry between degrees k and 3−k
reflects a shifted symplectic structure, which is a derived
incarnation of Hamiltonian dynamics.



Derived symmetries and currents

Just like the equations of motion in a field theory, the
failure of a symmetry to act fully locally is encoded by
constraints on the symmetry generators. The obstruction
arises from the spacetime derivatives in the kinetic term.

For example, for a typical “global” symmetry—including
any higher-form symmetry—the generator of the symmetry
is required to be a locally constant function.

Locally constant functions are resolved by the de Rham
complex, so the derived model is

“flat connections:” Ω•⊗g.

In degree one, we see the modulus corresponding to
coupling to a flat background.



In holomorphic theories (such as holomorphic twists, or
two-dimensional chiral CFTs), only antiholomorphic
derivatives appear in the kinetic term. So any global
symmetry enhances to a holomorphic one; the derived
model is given by the Dolbeault complex,

“holomorphic connections:” Ω0,•⊗g.

Nothing in this discussion is particular to global
symmetries at all. Spacetime symmetries work in precisely
the same fashion. In a holomorphic theory defined without
additional geometric data, the natural symmetry is by:

“holomorphic vector fields:” Ω0,•(T).

In degree one, we see H0,1(T1,0): these are Beltrami
differentials, or deformations of complex structure.



Costello and Gwilliam worked out a powerful
generalization of Noether’s theorem for any local L∞
algebra L . They construct a current algebra, which I will
call Cur(L ). To a field theory T with a symmetry by L ,
they then associate a map of P0 factorization algebras

Cur(L )→Obs(T).

(Here “P0 factorization algebra” should be parsed, roughly,
as “algebra of observables and OPEs.”)

The normal Noether current (a degree-zero observable) is
dual to the modulus in degree one. Its conservation law is
dual to the symmetry in degree zero. Constraints in degree
two are dual to improvement transformations.



We’ve now seen that local L∞ algebras control both field
theories and their symmetries.

Correspondingly, we’ve seen two ways of producing a
factorization algebra from a local L∞ algebra:

• For any local L∞ algebra, we can form its factorization
algebra of currents, Cur=C•(Lc).

• If L is equipped with the additional structure that
makes it a BV theory (roughly, a shifted Poisson
bracket), it has a factorization algebra of observables,
Obs=C•(L ).

One expects that these two factorization algebras are
Koszul dual (although the details of Koszul duality in this
setting have not been worked out). In physical terms: “The
universal object that couples to a theory is its currents.”

One should check that the two factorization algebras are Koszul dual in the sense of Lurie.



An additional thing that one learns from the derived
approach is that there are higher operations in topological
field theories, arising (roughly) from topological descent.

The observables of a d-dimensional topological field theory
form an Ed-algebra: roughly, one gets a locally constant
family of products for every picture of embeddings of little
d-disks. But this operad has higher cohomology!

One can prove that Ed algebras are equivalent to
(d−1)-shifted Poisson algebras.

In the case d= 2, this structure returns the 1-shifted
bracket of Lian–Zuckerman and Getzler in string theory, or
the BV algebra structure on polyvector fields in the
B-model. We will meet this example shortly, together with
other examples for d= 1,2,3.

Kontsevich; Tamarkin; Beem–Ben-Zvi–Bullimore–Dimofte–Neitzke; . . .



2 – Twisted holography via topological strings

Twisted holography goes back to the foundational work of
Costello–Li, and has been an actively developing area over
the last few years.

One main aim is to construct simpler models of holographic
dualities in holomorphic or topological field theories. Such
simpler models are, on the one hand, tractable to formulate
rigorously, and, on the other hand, valuable sources of
structural insight.

These simpler models are related to physical examples of
holography by twisting: passing to the invariants of
particular supercharges. They should thus be viewed as
lifts of typical computations where BPS quantities are
matched to the level of full-fledged field theories.

Costello–Gaiotto; Budzik–Gaiotto; Costello–Paquette; Oh–Zhou; Moosavian–Zhou. . .



Much of what is understood about twisted holography was,
in fact, computed without any direct twists of supergravity
theories. The original conjectures of Costello and Li, for
example, all originate in the B-model of topological string
theory.

Let Coh(X) denote (an appropriate version of) the derived
category of coherent sheaves on a Calabi–Yau manifold X
(generally noncompact). This is a Calabi–Yau category.

On general grounds, the moduli problem of deformations of
a category is described by its Hochschild cochains, and the
moduli problem of deformations compatible with the
Calabi–Yau structure is described by cyclic cochains. By the
Deligne conjecture, there is an E2 algebra structure!



By the Hochschild–Kostant–Rosenberg theorem, the
Hochschild cohomology of Coh(X) is described by
holomorphic polyvector fields on X:

PV•,• =
(
Ω0,•(∧•T), ∂

)
.

The cyclic cohomology is described by taking derived U(1)
invariants. Explicitly,

HC• =
(
PV•,•[[t]], ∂+ t∂Ω

)
,

where t is a formal parameter of degree two (generator of
the cohomology of BU(1)) and ∂Ω is the divergence operator
defined by the holomorphic volume form.

(This is closed string field theory.)

Bershadsky–Cecotti–Ooguri–Vafa, Costello–Li, . . .



Costello and Li’s version of BCOV theory is this formal
moduli problem. They show that there is a shifted Poisson
bracket on HC• that makes it into a field theory.

One can see that a piece of the theory, in degrees zero and
one, consists of the fields

“divergence-free holomorphic VFs:” PV1,• t ·PV0,• .
∂Ω

So BCOV theory is (among other things) a theory of
deformations of the complex-structure moduli of the
Calabi–Yau on which it is defined.

It’s natural to conjecture—as Costello and Li did—that
BCOV theory on C5 is the twist of type IIB string theory
with respect to a holomorphic target-space supercharge,
and that its “minimal” sector is the holomorphic twist of
IIB supergravity.



What about open strings?

In a sense, this is even easier. We know that the
open-string states between branes form the morphism
spaces in Coh(X). So, for a brane Γ, the fields of the brane
worldvolume theory should be given by End(Γ).

For a rank-one B-brane Γ supported on Ck ⊂C5, we obtain

End(Γ)=Ω0,•(Ck)⊗∧•(C5−k).

These are the fields of holomorphic Chern–Simons
theory—and, not by coincidence, the fields of the
holomorphic twist of maximal super Yang–Mills theory, the
worldvolume theory of a single D(2k−1)-brane. In general,
we tensor with gl(N); the theory has an E1 (associative)
structure, corresponding to superparticle models.



The typical form of a twisted holography statement is
something like the following: Consider a bulk theory living
on X, and place a stack of N branes on Y ⊂X.

There then exists a coupling map describing the
interactions. Generally, this map takes the form

Obsgrav
∣∣!
Y →ObsN

brane,

where the left-hand side describes gravitational
observables at the support of the brane after backreaction
is taken into account.

The conjecture is that this map becomes an equivalence in
the large N limit, so that the brane theory and the
gravitational theory are Koszul dual. (This is a version of
the normal statement that CFT observables couple to
supergravity fields.)



This map has been worked out in several different
examples. In the IIB examples studied so far, the
equivalence is related to a theorem of
Loday–Quillen–Tsygan.

I would like to focus on an example for M-theory in the
omega background, worked out by Costello. Here the bulk
theory is effectively on R×C2, with a stack of fivebranes
along C. (Six directions have been localized away.)

Costello argues using dualities that the bulk theory is a
Poisson–Chern–Simons theory: its fields are
Ω•(R)⊗Ω0,•(C2), and the Lie structure comes from the
Poisson bracket defined by a holomorphic volume form.
(The Poisson structure is not accidental; remember E3. . . )



From the AGT correspondence, or from work of
Beem–Rastelli–van Rees, one expects that the observables
of the theory on N fivebranes, in this limit, are the WN
current algebra.

For N = 2, this is just Virasoro currents. And for N =∞, it
is again the currents of a local Lie algebra L : namely,
differential operators on C.

The currents of a local Lie algebra should be dual to its
observables, so we expect L to correspond to the fields of
Poisson–Chern–Simons theory. And this is indeed the case:
z maps to itself, and w maps to ∂z.



Some obvious questions:
• How might one go about proving such conjectures for

twists of supergravity theories?
• There’s a lot of nice structure here; is it an artifact of

the twist? How much of it functions in a parallel way
in the physical theory?

• All of the moduli problems that we’ve seen were easy
to describe or geometrically natural. Isn’t real
supergravity a lot more baroque and complicated?

In the remaining time, I will try to address each a bit.



3 – The moduli problem of deformations of superspace

The key idea here is to recall that superspace is not just a
smooth supermanifold. It is equipped with an extra
geometric structure, witnessing the fact that the
supersymmetry algebra is not abelian: Q’s commute to P’s.†

This structure can be thought of as a nonintegrable odd
distribution of maximal dimension, which specifies the
supersymmetry covariant derivatives. On flat superspace,

Qa = ∂

∂θa +γµabθ
b ∂

∂xµ
, Da = ∂

∂θa −γµabθ
b ∂

∂xµ
,

when acting on the left and on the right, respectively.

†“Flat superspace has torsion.”



An almost-complex structure is defined by precisely the
same kind of data: a distribution

T ⊂TC

in the (complexified) tangent bundle. The structure is
integrable precisely when its “torsion” vanishes.

So any structure in almost-complex geometry that I can
define using that data has an analogue in superspace.

A very similar perspective was taken by Berkovits and Howe. See also the work of Tanaka.



To reconstruct holomorphic functions, I need to build the
Dolbeault complex, which I can do using the “Hodge
filtration.” Differential forms on flat superspace are
generated by coordinates xµ,θa and one-forms dxµ,dθa. But
we need to work with respect to the left-invariant frame

λa = dθa, vµ = dxµ+θaγ
µ

abdθb.

In this basis, the de Rham differential becomes

d=λaλbγ
µ

ab
d

dvµ
+λa

(
d

dθa −γµabθ
b d

dxµ

)
+vµ

d
dxµ

.

The middle term is the analogue of ∂; it squares to zero up
to the “pure spinor constraint” λaγ

µ

abλ
b = 0, which is

imposed by the first term γ of the differential. We can make
a smaller model on the cohomology of γ. . .

Berkovits, Cederwall, Howe, Nilsson, . . .



But what is the multiplet A• of “holomorphic” functions?

Superspace Structure sheaf On-shell? dimC CY?
3d N = 1 vector 1
4d N = 1 vector 2
6d N = (1,0) vector 3
6d N = (2,0) abelian tensor X∗ 1
P1 ×P2 T X∗ 1
10d N = (1,0) vector X 5 X†

10d N = (2,0) supergravity (IIB) X∗ 1
∧2(T)⊕T∗ min. BCOV X∗ 1
11d N = 1 supergravity X 2 X
Gr(2,5) E(5|10) X 2 X

The star refers to presymplectic on-shell (BV) theories, which include self-dual fields. The
dagger refers to a subtlety that will not be important here (“Gorenstein, but not maximally
Cohen–Macaulay.”)



From this, it’s easy to compute the multiplet (indeed, the
local L∞ algebra) analogous to “holomorphic vector fields”
above. These are those vector fields on superspace that are
compatible with the odd distribution.

Computing this in examples, we rediscover the conformal
supergravity multiplet in every case! This is unsurprising:
the distribution is invariant under rescaling.

This multiplet naturally acts on any supersymmetric field
theory whose superspace definition does not require
additional data—in particular, on free pure spinor theories.



4 – Twisting and untwisting

The key point can be put as follows: On flat superspace,
twisting is the odd version of dimensional reduction. In a
precise sense, a theory and its twists have the same
structure.

After all, dimensional reduction takes invariants of a vector
field generating an even translation. Twisting takes
invariants of a supercharge; in a superfield formalism, this
is just a vector field generating an odd translation.

From this perspective, it’s not surprising that superfield
formulations or actions do not change dramatically under
twisting. (When I dimensionally reduce, I write the same
action functional, restricted to a smaller space of fields.)



One rigorous formulation of this point is the following:

Theorem (IAS–Williams)
The construction outlined above commutes with twisting. In
particular, the twist of A• by a square-zero supercharge Q is
obtained by applying A• to the algebra of residual
supertranslations in the desired twist.

As a corollary, the holomorphic twist of the type IIB
supergravity multiplet is (free) minimal BCOV
theory—just as conjectured by Costello–Li.

Because of the computational efficiency of the formalism,
checking this—which would be deeply unwieldy in
components—becomes a task you can do in five minutes.
And it’s not just about free theories. . .

This statement is true up to taking potentials for various field strengths in BCOV.



• Baulieu: Holomorphically twisted ten-dimensional
super Yang–Mills theory is holomorphic
Chern–Simons theory on C5.

• Berkovits; Schwarz; Witten: Ten-dimensional super
Yang–Mills theory is holomorphic Chern–Simons
theory on superspace.

• Costello: Maximally twisted eleven-dimensional
supergravity should be Poisson–Chern–Simons theory
on C2 ×R7.

• Raghavendran–IAS–Williams: Holomorphically
twisted eleven-dimensional supergravity on C5 ×R
should be the exceptional Lie superalgebra E(5|10).

• Cederwall; Hahner–IAS: Untwisted eleven-dimensional
supergravity is Poisson–Chern–Simons theory on
superspace. So is E(5|10).



5 – Membranes and fivebranes

The payoff of all of this is that we can use the structures in
the simplest twisted holography models, mutatis mutandis,
in more complicated twisted settings—or directly in the
physical theory.

Moreover, we have concrete proposals for theories whose
twists are known—even in cases where the theory itself is
mysterious. . .



As an example of the first kind: Our construction of
eleven-dimensional supergravity as a
Poisson–Chern–Simons theory provides a 2-shifted Poisson
algebra structure on its fields—otherwise known as an
E3-algebra structure.

This is a new and concrete piece of evidence for a
first-quantized origin.

Going further, it’s easy to write down an object whose
maximal twist agrees with Virasoro currents: namely, the
currents of “holomorphic” vector fields on superspace. And
it’s natural to guess that this object is (closely related to?)
the theory on a stack of two fivebranes.



Here is the result:

0 : Vect ΠS+(R) Ω0(adR)

1 : Met0 ΠRS(R) Ω1(adR)⊕Ω3+(5) ΠS−(16) Ω0(14).

And here it is for holomorphic N = (2,0) supersymmetry:

0 : Vecthol Ω1
hol ⊗ΠR′ Ω0

hol(adR′).

The first of these, L(2,0), is a derived version of the
conformal supergravity multiplet of Bergshoeff, Sezgin, and
van Proeyen. The second (on flat space) is the exceptional
simple Lie superalgebra E(3|6) constructed by Kac.



The connection to 5d super Yang–Mills theory is not
automatic. I will check this at the holomorphic level by
giving a map from the dimensional reduction of E(3|6)
currents to the perturbative holomorphic twist of the sl(2)
theory. The dimensional reduction to 5d is

L red
(2,0) :

Vecthol Ω1
hol ⊗ΠR′ Ω0

hol(adR′).

Ω0
hol ·∂w (Ω0

hol ·dw)⊗ΠR′

(Xµ,x) (ψa
µ,ξa) ρab

Inside of Cur(L red
(2,0)), these generators are shifted down by

one. But we need to take compactly supported sections,
meaning that the nontrivial generators in cohomology are
overall in degree +2.



Perturbative holomorphic super Yang–Mills theory with
g= su(2) is also described (in BV) by a local L∞ algebra of
the form

E :
Ω0

hol ⊗g Ω0
hol ⊗ΠR′⊗K1/2 Ω3

hol ⊗g.

α φa β

Overall, α and β are observables of odd parity, and the φa

are of even parity. Each observable has degree +1. su(2)
has only one quadratic Casimir invariant, so the
gauge-invariant observables (at lowest order in
holomorphic derivatives) are generated by quadratic
expressions in β, φa, and the holomorphic derivatives of α.



The map can be written down very explicitly:

ρab 7→ tr
(
φaφb

)
,

ξa 7→ tr
(
φaβ

)
, ψa

µ 7→ tr
(
φa∂µα

)
,

Xµ 7→ tr
(
β∨∂µα

)
, x 7→ tr(∂1α∂2α).

At a hand-waving level, and ignoring the central extension,
one can already see how the relevant components of the
Poisson brackets match up (recalling that α is conjugate to
β and φ1 to φ2).

More properly, one might frame this as a map from L red
(2,0) to

(shifted) local functionals in holomorphic Yang–Mills.

At an intuitive level: compare to Drinfeld–Sokolov, Feigin–Frenkel. . .



To fully work out the structure of this algebra, one needs to
understand possible central extensions of L(2,0). One
expects a unique local central extension, closely connected
to the superconformal invariant studied in the literature.
(In progress with Williams.)

We expect to construct higher-rank examples as higher
analogues of Wn algebras. W∞ is understood: it is (the
Koszul dual, so the currents, of) eleven-dimensional
supergravity!

In forthcoming work with Hahner, Raghavendran, and
Williams, we give the superspace description of the
higher-spin currents that generate the Wn algebra. At the
holomorphic level, we identify the corresponding E(3|6)
modules, and show that they arise from the sequence of
line bundles O(0,n) on the pure spinor space P1 ×P2.

Butter–Novak–Tartaglino-Mazzucchelli; Raghavendran–Williams; IAS–Williams



To make sense of the full algebraic structure, we should
better understand the factorization structure on higher Wn
algebras. We expect to recover analogues of the
Gelfand–Dickey Poisson bracket in this higher setting. (In
progress with Raghavendran and Williams.)

Is there an E3 algebra whose factorization homology on the
two-sphere reproduces the 2-shifted Poisson structure of
eleven-dimensional supergravity? Can one construct such a
thing by studying ABJM theory?

There is lots to do here!



Thanks for your attention!
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