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e Conformal symmetry

e Unitarity

e Associative OPE
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AdS-CFT

CFTq on the
boundary \

Can we extend this understanding to our own universe?



Holography for all As?

The maximally symmetric cousins of AdS

A > 0 de Sitter A = 0 Minkowski
T+ o
A
(§D".
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e Cosmological scales e intermediate scales

e Primordial inflation



Holography for all As?

The maximally symmetric cousins of AdS

A > 0 de Sitter

I+

-
Cosmological Bootstrap

[Arkani-Hamed and Maldacena ’15]

[Arkani-Hamed and Benincasa ’'17]
[Arkani-Hamed, Baumann, Lee and Pimentel ’18]

[Sleight and Taronna ’19] [Pajer et al '20] [...]

awi

A = 0 Minkowski

Celestial
sphere

Celestial holography
[de Boer and Solodukhin '03]

[Strominger ’17] [Pasterski, Shao, Strominger ’17]
[Pasterski, Shao ’17] [...]



Holography for all As?

Boundary correlators in AdS, dS and on the celestial sphere can be reformulated as
boundary correlators in Euclidean AdS:

Wick rotation

—
A <O
Perturbatively:
A>0 A= [lacobacci, C.S. & Taronna ’22]
[C.S. & Taronna ’19, 20, '21] [C.S. & Taronna "23]

dS and Celestial correlators therefore have a similar analytic structure to their EAdS counterparts!
On a practical level, can use such identities to import techniques and understanding from AdS.




Outline

Some Applications.



A >0



dS Boundary Correlators

INn-in formalism

A

lim (0|@1 (x1,7) -+ Pn (Xn,7)|0)

T—00
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— branch : : + branch
(Anti-time-ordered) (time-ordered)
0] 0)

Take |0) to be the de Sitter vacuum which reduces to the Minkowski vacuum at early times.

( )



dS Boundary Correlators

INn-in formalism

lim (0|@1 (x1,7) -+ Pn (Xn,7)|0)

T—00

Feynman rules:

+ bulk-to- & bulk propagator:

+ bulk-to- propagator:

/

+

Sum contributions from each branch (+) of the time (in-in) contour!



From dS to Euclidean AdS

Euclidean AdS dS
/ Rd
....... R¢
------- /
________ B — .
Z2 =00 <« z=20
2 1 dx? —dn? + dx?
dS2 = Rids dz _|_2 = - d82 — RC%S 77 772
z

EAdS and dS are identified under:

Rags = £1Rgs z = 4i(—n)

time




From dS to Euclidean AdS

+ bulk-to- £ bulk propagator: [C.S. and M. Taronna ’19, 20, ’21]
m2 , . , .
— T T A+t L FFA_FiEAL
+ +
m?R3is = ALA_
Dirichlet Neumann

4 boundary condition boundary condition
ds + branch

4 + bulk-to-boundary propagator:

A
_THA
+

-+ bulk integrals:

Ay
A, .
.\l<A2 — et (d=1)%
) .i, As

One can then write an EAdS Lagrangian for dS correlators [Gorbenko, Komatsu, di Pietro '21]

Y

— branch




From dS to Euclidean AdS

Examples.

Non-derivative vertex of scalars fields V (X) = g¢1 (X) ... ¢, (X)

Contact diagram:

Where

s 1>H€¢M ~L%




From dS to Euclidean AdS

Examples.

Non-derivative vertex of scalars fields V (X) = g¢1 (X) ... ¢, (X)

Contact diagram:




From dS to EAdS, and back

dS boundry correlators are perturbatively recast as Witten diagrams in EAdS:

e.g. four-points

Combines contributions from
each branch of the in-in contour

— z : CAl:i: An:t
A1:t An:l:

Sum over boundary conditions
for exchanged particles

Cfontact ¥ X C]C\/(;ntact

Notes:

e Contributions from both A+ modes, which is not always possible in AdS

® A,4+ € Unitary Irreducible Representation of dS isometry

[ Can use to import techniques and results from AdS to dS! j







Hyperbolic slicing of Minkowski space

(d+2)-dimensional Minkowski space M%"2 | coordinates X*, A=0,...d+1

Ar: X? = -t (EAdSg:1,radius t)

D: X?=FR? (dSq.1, radius R)
Conformal boundary:
R*=0, Q=XQ, McRT"
Introduce projective coordinates:

fi:Qi/Qov Z:177d+1

4. =1




Minkowski boundary correlators

Radial of Minkowski correlators implements a radial reduction
onto the hyperbolic slicing:

OAl (Ql)
° 0A2 (Q2)
° dt ~
— H lim / —t <¢1(t1X1) ¢n(tan)>
X; —Q; ti
OAn (Qn) T

radial coordinate

Celestial correlators then arise in the boundary limit X; — Q; !

Inverse

4400
/ i) /2+ 9B a )
o 1 ino 2



Minkowski boundary correlators

Radial of Minkowski correlators implements a radial reduction
onto the hyperbolic slicing:

OAl (Ql)
° OA2 (Q2)
° dt ~
— H lim / —t <¢1(t1X1) ¢n(tan)>
X; —Q; ti
OAn (Qn) T

radial coordinate

Celestial correlators then arise in the boundary limit X; — Q; !

“Celestial” bulk-to-boundary propagator:

Kernel of the radial reduction
(Bessel-K function)

| | A
Gt (X, Q) = lim it t= G (X tf/) = £ )(\/X2+ie) X b /

Y —Q



From the Celestial Sphere to EAdS

Examples.

Non-derivative vertex of scalars fields V (X) = g¢1 (X) ... ¢, (X)

Contact diagram:

(O, (Q1)...0n.(Qn)) = —ig / 22X G X, Q1) - GRY (X, Q)

g 2

GR(X,Q) = Ky (Vx> +ie) x X/

\— _J

l

, d
— RA1...An (mla"'7mn) X sin <2+2

Contribution from radial integral.
Encodes all mass dependence.
(Generalised hypergeometric)

Like in dS, Celestial contact diagrams are proportional to their EAdS counterparts



From the Celestial Sphere to EAdS

[C.S. and M. Taronna ’23]
In general, for exchanges of particles of mass m;, 1=1,...,n

Unitary Principal Series
representations of SO(d+1,1)

Ona, , :
[}
d . — —
. /WOO dA,  dA,
O, = P
o 0A4 %

: S l

oo 2T 271 |

Minkowski exchanges are a continuum
of EAdS exchanges

Process with M vertices factorises into:

tact tact Makes manifest
Cfon D S Cﬁn e conformal symmetry

Compare with de Sitter:

—

Ait... A+

vt

dS exchanges are a discrete sum
of EAdS exchanges

Process with M vertices



From the Celestial Sphere to EAdS

[C.S. and M. Taronna ’23]
In general, for exchanges of particles of mass m;, 1=1,...,n

Unitary Principal Series
representations of SO(d+1,1)

Oa
- On, ' i, - -
- 2 THOY d\{ dAn
OAz — 2 . **° 2 . CAlAn (m]-?"‘?mn)
. O d_ino i’ v’
Ay 2
o A f
Minkowski exchanges are a continuum
of EAdS exchanges |
tact tact Makes manifest
Cfon R S Cﬁ?n e conformal symmetry
Comments:
® Relation to definition [Pasterski, Shao, Strominger 17| of celestial correlators

as scattering amplitudes in a conformal basis?
[Pasterski, Shao, Strominger ’17] = LSZ ([Sleight, Taronna ’23]) ?

® Celestial correlators defined as an extrapolation of bulk Minkowski correlators
give a definition of celestial correlators for theories without an S-matrix.

What lessons can we draw from Minkowski CFT?



Some applications.



Perturbative OPE data

Perturbative OPE data on the boundary of dS and Minkowski space from EAdS

[Oo]n,g ~ O (32)n Oi, ... 0;,O+ ... scaling dimension: Ape=2042n4 04 Yo
—

anomalous
dimension

® “Yn ¢ induced by bulk ¢4 contact diagram in dS:

e 4 . d 4
W — sin (—5 +2A> T X —_— ’yg’e — Sin <_§ —+ 2A> m™ X (EAdS)fy?fje

e “n,¢ induced by an exchange diagram in dS:

—_ ’Yn,ﬁ = sin <



Perturbative OPE data

Perturbative OPE data on the boundary of dS and Minkowski space from EAdS

scaling dimension: A, y = 2A +2n + {4+ v, 4
—

anomalous

dS dimension

VS.

A, ¢ is unitary A, ¢ is (generally) non-unitary

— stable particle (bound state) — resonance



Conformal Partial Wave Expansion

Perturbative dS and celestial correlators have a similar analytic structure to those in AdS.

— Like in AdS they admit a conformal partial wave expansion

2+zoo dA
(O (x1) O (x2) O (x Z/d =07 (A) Fa,j(x1,%2,X3,X4)

: 271 I ]

Conformal Partial Wave

This has been argued to hold non-perturbatively as well

Unitarity: pJ (A) > () +crossing — Bootstrap for Euclidean CFTs?

Cf. Lorentzian CFT:
(O (x1) O (x2) O (x3) O (x4)) = » CRK; Ga,s(X1,X2,X3,X4)

Conformal Block

Unitarity: CZJ >0 +crossing — Conformal Bootstrap



Thank you.



