

Diamonds of integrable deformations

Ben Hoare

Durham University

Based on work with Lewis Cole, Ryan Cullinan, Joaquin Liniado and Dan Thompson

DESY Theory Workshop

September 2023

Conclusion 00

Introduction

- Integrable systems appear in many guises in mathematical and theoretical physics:
 - exact results in QFT,
 - quantum groups and algebras,
 - statistical mechanics,
 - string and gauge theory,
 - gauge/gravity duality.

- The landscape of 2d integrable models continues to grow:
 - direct construction (challenging),
 - E-models (2d Hamiltonian formulation), [Klimčík, Ševera, ...]
 - affine Gaudin models (integrable systems), [Feigin, Frenkel, Delduc, Lacroix, Magro, Vicedo, ...]
 - higher-dimensional gauge theories, [Ward, Mason, Woodhouse, Costello, Yamazaki, Witten, ...]
 - dualities and deformations (more general guiding principles).
- These frameworks and approaches are closely connected.

6d hCS to 4d IFT to 2d IFT

Conclusion 00

Introduction

- Higher-dimensional gauge theories:
- ★ 4d Chern-Simons (4d CS)

[Costello, Yamazaki, Witten, ...]

$$\frac{1}{2\pi i}\int_{\boldsymbol{\Sigma}\times\mathbb{CP}^1}\omega\wedge(\boldsymbol{A}\wedge\boldsymbol{d}\boldsymbol{A}+\frac{2}{3}\,\boldsymbol{A}\wedge\boldsymbol{A}\wedge\boldsymbol{A})$$

- localises on order and disorder defects on \mathbb{CP}^1 to give 2d IFTs.
- ★ 4d anti-self-dual Yang-Mills (4d IFT)

[Ward, Mason, Woodhouse, ...]

$$F_{AA'BB'} = \epsilon_{AB} \Phi_{A'B'} + \epsilon_{A'B'} \tilde{\Phi}_{AB} \qquad \Phi_{A'B'} = 0$$

symmetry reduces to 2d IFTs.

Introduction	
00000000	

Conjecture (Costello):

6d hCS to 4d IFT to 2d IFT

Conclusion 00

Introduction

- Higher-dimensional gauge theories:
- ★ 6d holomorphic Chern-Simons (6d hCS)

$$rac{1}{2\pi i}\int_{\mathbb{PT}}\Omega\wedge (ar{\mathcal{A}}\wedgear{\partial}ar{\mathcal{A}}+rac{2}{3}\,ar{\mathcal{A}}\wedgear{\mathcal{A}}\wedgear{\mathcal{A}})$$

- 6d theory on twistor space,
- localises on defects to give 4d IFTs,
- symmetry reduces to 4d CS.

6d hCS to 4d IFT to 2d IFT

Conclusion 00

Introduction

- What can we learn about:
 - the unification of classifications?
 - the landscape of integrable models?
 - the relation between integrable models?
 - properties of integrable models?

What was known

- The diamond has been constructed for the PCM + WZ term: [Bittleston, Skinner]
 - Dirichlet (Cauchy) boundary conditions work as expected.
- Early attempts for deformed models were:
 - unclear how to lift boundary conditions from 4d CS,
 - unclear what gauge symmetries to expect in the 2d and 4d IFTs.

What is known now

- The diamond has been successfully constructed for the current-current deformation of the WZW CFT.
- There is a systematic picture of how to implement boundary conditions and what gauge symmetries to expect.

[Cullinan, Cole, BH, Liniado, Thompson]

[Chen. He. Tian]

The 2d IFTs 00000000 6d hCS to 4d CS to 2d IFT

6d hCS to 4d IFT to 2d IFT

Conclusion

- 1. Introduction
- 2. The 2d IFTs
- 3. From 6d hCS to 4d CS to 2d IFT
- 4. From 6d hCS to 4d IFT to 2d IFT
- 5. Summary and future directions

The 2d IFTs 00000000 6d hCS to 4d CS to 2d IFT

6d hCS to 4d IFT to 2d IFT

Conclusion

- 1. Introduction
- 2. The 2d IFTs
- 3. From 6d hCS to 4d CS to 2d IFT
- 4. From 6d hCS to 4d IFT to 2d IFT
- 5. Summary and future directions

The 2d IFTs 00000000 6d hCS to 4d CS to 2d IFT

6d hCS to 4d IFT to 2d IFT

Conclusion

- 1. Introduction
- 2. The 2d IFTs
- 3. From 6d hCS to 4d CS to 2d IFT
- 4. From 6d hCS to 4d IFT to 2d IFT
- 5. Summary and future directions

The 2d IFTs 00000000 6d hCS to 4d CS to 2d IFT

6d hCS to 4d IFT to 2d IFT

Conclusion

- 1. Introduction
- 2. The 2d IFTs
- 3. From 6d hCS to 4d CS to 2d IFT
- 4. From 6d hCS to 4d IFT to 2d IFT
- 5. Summary and future directions

The 2d IFTs 00000000 6d hCS to 4d CS to 2d IFT

6d hCS to 4d IFT to 2d IFT

Conclusion

- 1. Introduction
- 2. The 2d IFTs
- 3. From 6d hCS to 4d CS to 2d IFT
- 4. From 6d hCS to 4d IFT to 2d IFT
- 5. Summary and future directions

Introduction	The 2d IFTs	6d hCS to 4d CS to 2d IFT	6d hCS to 4d IFT to 2d IFT	Conclusion
0000000	●0000000	000000000	00	00

PCM plus WZ term

• The action of the PCM plus WZ term for the simple Lie group G is [Novikov, Witten]

$$\mathcal{S} = -\frac{k}{8\pi h} \int_{\Sigma} \operatorname{vol}_2 \operatorname{tr} \left(J_+ J_- \right) - \frac{k}{8\pi} \int_{\Sigma \times [0,1]} \operatorname{vol}_2 \wedge d\xi \operatorname{tr} \left(J_{\xi}[J_+, J_-] \right)$$

$$- J = g^{-1}dg \in Lie(G) = \mathfrak{g}$$
 where $g \in G$,

- $-\sigma^{\pm}$ are coordinates on the 2d space-time Σ , ξ is coordinate on [0, 1],
- J_{\pm} and J_{ξ} are the pull-backs of J to Σ and $\Sigma \times [0, 1]$,
- h is the sigma model coupling,
- $-k \in \mathbb{Z}$ is the level of the Wess-Zumino term,
- tr is the normalised Killing form.

6d hCS to 4d CS to 2d IFT

6d hCS to 4d IFT to 2d IFT

Conclusion 00

PCM plus WZ term – classical integrability

• The e.o.m. of the PCM plus WZ term is

$$(1+h)\partial_+J_-+(1-h)\partial_-J_+=0$$

• There is a current that is both conserved and flat on-shell

$$(1 \mp h)J_{\pm}$$

• Therefore, a Lax connection exists

$$\mathcal{L}_{\pm} = rac{1 \mp h}{1 \mp \zeta} \, J_{\pm} \qquad \zeta \in \mathbb{C}$$

• The Poisson bracket of the Lax matrix is of Maillet form and we have conserved charges in involution.

6d hCS to 4d IFT to 2d IFT 00 Conclusion

PCM plus WZ term - RG flow

• The RG flow of the PCM plus WZ term is

- -k is an RG invariant, h runs with the RG time t,
- asymptotically free in the UV,
- flows to the G_k WZW CFT, h = 1, in the IR

$$\mathcal{S} = -rac{k}{8\pi}\int_{\Sigma} \mathrm{vol}_2 \, \mathrm{tr}\left(J_+J_-
ight) - rac{k}{8\pi}\,\mathcal{S}_{\mathsf{WZ}}(g)$$

Introduction The 2d IFTs

6d hCS to 4d CS to 2d IFT 0000000000 6d hCS to 4d IFT to 2d IFT

Conclusion

Current-current deformation

• The action of the G_k WZW CFT perturbed by the current-current bilinear is [Sfetsos]

$$\mathcal{S} = - rac{k}{8\pi} \int_{\Sigma} \mathrm{vol}_2 \operatorname{tr} \left(J_+ \, rac{1 + \lambda \operatorname{Ad}_g^{-1}}{1 - \lambda \operatorname{Ad}_g^{-1}} \, J_-
ight) - rac{k}{8\pi} \, \mathcal{S}_{\mathsf{WZ}}(g)$$

- λ is the deformation parameter,
- the leading term is a current-current bilinear

$$\mathcal{S} = \cdots - rac{k\lambda}{4\pi} \int \operatorname{vol}_2 \operatorname{tr} \left(\partial_+ g g^{-1} g^{-1} \partial_- g
ight) + \ldots$$

• Commonly referred to as the λ -model in the literature.

6d hCS to 4d CS to 2d IFT 0000000000 6d hCS to 4d IFT to 2d IFT

Conclusion 00

Current-current deformation - RG flow

• The current-current perturbation is marginally relevant

- k is an RG invariant, λ runs with the RG time t,
- flows from the G_k WZW CFT in the UV,
- strongly coupled in the IR.

000000000

Current-current deformation - classical integrability

The action of the deformed model can be written as

The 2d IFTs

$$\begin{split} \mathcal{S} &= -\frac{k}{8\pi}\int_{\Sigma} \operatorname{vol}_2 \operatorname{tr} \left(J_+ J_-\right) - \frac{k}{8\pi}\,\mathcal{S}_{\mathsf{WZ}}(g) \\ &+ \frac{k}{4\pi}\int_{\Sigma} \operatorname{vol}_2 \left(A_+ J_- - A_-\operatorname{Ad}_g J_+ + A_-\operatorname{Ad}_g A_+ - \lambda^{-1}A_+A_-\right) \end{split}$$

• In terms of the on-shell values of the auxiliary fields A_+ , the e.o.m. can be written

$$\partial_{\pm}A_{\mp} - \lambda\partial_{\mp}A_{\pm} + [A_{\pm}, A_{\mp}] = 0$$

 $-A_+$

We can construct a flat conserved current

and the model is classically integrable.

6d hCS to 4d IFT to 2d IFT

Four-parameter model

• This can be embedded inside a four-parameter 2-field model

[Georgiou, Sfetsos]

$$\begin{split} \mathcal{S} &= -\frac{k}{8\pi} \int_{\Sigma} \operatorname{vol}_{2} \operatorname{tr} \left(J_{+} J_{-} \right) - \frac{k}{8\pi} \, \mathcal{S}_{\mathsf{WZ}}(g) - \frac{\tilde{k}}{8\pi} \int_{\Sigma} \operatorname{vol}_{2} \operatorname{tr} \left(\tilde{J}_{+} \tilde{J}_{-} \right) - \frac{\tilde{k}}{8\pi} \, \mathcal{S}_{\mathsf{WZ}}(\tilde{g}) \\ &+ \frac{k}{4\pi} \int_{\Sigma} \operatorname{vol}_{2} \left(A_{+} J_{-} - B_{-} \operatorname{Ad}_{g} J_{+} + B_{-} \operatorname{Ad}_{g} A_{+} \right) \\ &+ \frac{\tilde{k}}{4\pi} \int_{\Sigma} \operatorname{vol}_{2} \left(B_{+} \tilde{J}_{-} - A_{-} \operatorname{Ad}_{\tilde{g}} \tilde{J}_{+} + A_{-} \operatorname{Ad}_{\tilde{g}} B_{+} \right) \\ &- \frac{\sqrt{k\tilde{k}}}{4\pi} \int_{\Sigma} \operatorname{vol}_{2} \left(\lambda^{-1} A_{+} A_{-} + \tilde{\lambda}^{-1} B_{+} B_{-} \right) \end{split}$$

- If we formally take λ̃ → 1 and set k = k̃, there is an emergent G gauge symmetry.
- We can set g̃ = 1 and solve for B_± to recover the current-current deformation of the G_k WZW CFT.

6d hCS to 4d IFT to 2d IFT

Conclusion 00

Four-parameter model

- This model has many nice features:
 - marginally relevant deformation of the $G_k \times G_{\tilde{k}}$ WZW CFT.

$$\mathcal{S} = \cdots - rac{\sqrt{k ilde{k}}}{4\pi} \int \mathsf{vol}_2 \operatorname{tr} \left(ilde{\lambda} \partial_+ g g^{-1} ilde{g}^{-1} \partial_- ilde{g} + \lambda \partial_+ ilde{g} ilde{g}^{-1} g^{-1} \partial_- g
ight) + \ldots$$

- flows to non-trivial fixed points in the IR.
- classically integrable with flat conserved currents $(k_0 = \sqrt{\frac{\tilde{k}}{k}})$

$$\begin{array}{c|c}
\frac{2(1-k_0^{\mp 1}\lambda)}{1-\lambda^2} A_{\pm} & \frac{2(1-k_0^{\pm 1}\tilde{\lambda})}{1-\tilde{\lambda}^2} B_{\pm} \\
\begin{array}{c}
\text{6d hCS} \\
\text{4d CS} & \text{4d IFT} \\
\end{array}$$

Conclusion 00

Origin from 4d CS

• The action of 4d CS is

[Costello, Yamazaki, Witten, ...]

$$\frac{1}{2\pi i}\int_{\Sigma\times\mathbb{CP}^1}\omega\wedge(A\wedge dA+\frac{2}{3}\,A\wedge A\wedge A)$$

$$-~(\sigma^{\pm},\zeta)$$
 are coordinates on $\Sigma imes \mathbb{CP}^1,$

- $-\omega$ is a specified meromorphic 1-form on \mathbb{CP}^1 ,
- A is a g-valued 1-form on $\Sigma \times \mathbb{CP}^1$.
- To define the theory, we specify ω and boundary conditions, which ensure that the boundary variation vanishes.
- More mathematically rigorous treatments are available!

4d CS origin of the PCM plus WZ term

• For the PCM plus WZ term

- The positions of the zeroes and the double pole at infinity are fixed by SL(2, C).
- The remaining freedom is the position of the double pole on the finite plane.
- The boundary conditions are

$$A_{\pm}|_{\zeta=h} = 0 \qquad A_{\pm}|_{\zeta\to\infty} = 0$$

$$4d CS \qquad 4d IFT$$

$$2d IFT$$

The 2d IFTs 00000000

Introduction

6d hCS to 4d CS to 2d IFT ○○●○○○○○○○ 6d hCS to 4d IFT to 2d IFT

Conclusion 00

4d CS origin of the current-current deformation

• For the current-current deformation of the G_k WZW CFT

- The positions of the zeroes and the double pole at infinity are fixed by SL(2, C).
- The remaining freedom is the position of the simple poles on the finite plane.
- However, note that $res_{\zeta \to \infty} = 0$.
- The boundary conditions are

$$A_{\pm}|_{\zeta=lpha} = A_{\pm}|_{\zeta=-lpha} \qquad A_{\pm}|_{\zeta\to\infty} = 0$$

Conclusion 00

Origin from 4d CS

In both cases the boundary conditions can be understood systematically.

[Delduc, Magro, Lacroix, Vicedo,...]

· From the gauge field and its derivatives evaluated at the poles we construct

$$\mathbb{A}_{\pm}\in\mathfrak{d}$$

where ${\mathfrak d}$ is a Drinfel'd double with bilinear form $\langle\!\langle,\rangle\!\rangle.$

• Setting the boundary variation to vanish implies that

$$\langle\!\langle \mathbb{A}_+, \delta \mathbb{A}_-
angle\!
angle = \langle\!\langle \mathbb{A}_-, \delta \mathbb{A}_+
angle\!
angle$$

• The boundary conditions we've seen so far correspond to taking

$$\mathbb{A}_\pm \in \mathfrak{l}$$

where $\mathfrak l$ is a Lagrangian subalgebra of $\mathfrak d.$

6d hCS to 4d IFT to 2d IFT

Conclusion 00

Symmetry reducing 6d hCS to 4d CS

The action of 6d hCS is

$$rac{1}{2\pi i}\int_{\mathbb{PT}}\Omega\wedge (ar{\mathcal{A}}\wedgear{\partial}ar{\mathcal{A}}+rac{2}{3}\,ar{\mathcal{A}}\wedgear{\mathcal{A}}\wedgear{\mathcal{A}})$$

- -~ Euclidean twistor space \mathbb{PT} is diffeomorphic to $\mathbb{R}^4\times\mathbb{CP}^1,$
- $-(x^{\mathcal{A}\mathcal{A}'},\pi_{\mathcal{A}'})$ are coordinates on $\mathbb{R}^4 imes\mathbb{CP}^1.$
- A and A' are left- and right-handed spinor indices: $A \in \{1, 2\}$, $A' \in \{1, 2\}$,
- $\ \Omega$ is a specified meromorphic 3-form,
- $\bar{\mathcal{A}}$ is a g-valued anti-holomorphic 1-form on \mathbb{PT} .
- To define the theory, we specify \varOmega and boundary conditions, which ensure that the boundary variation vanishes.

Conclusion 00

Symmetry reducing 6d hCS to 4d CS

• The relevant meromorphic 3-form is

$$\Omega\sim rac{1}{2}~rac{\langle \pi d\pi
angle \wedge dx^{AA'}\wedge dx^{BB'}\epsilon_{AB}\pi_{A'}\pi_{B'}}{\langle \pi lpha
angle \langle \pi \widetilde{lpha}
angle \langle \pi \widetilde{lpha}
angle ^2}$$

• We have a double pole at $\pi_{A'} = \beta_{A'}$ and two simple poles $\pi_{A'} = \alpha_{A'}$ and $\pi_{A'} = \tilde{\alpha}_{A'}$.

- We introduce bases for left- and right-handed spinors, $\{\kappa_1^A, \kappa_2^A\}$ and $\{\gamma_{1A'}, \gamma_{2A'}\}$:
 - the boundary conditions are specified in terms of $\{\kappa_1^A, \kappa_2^A, q\}$,
 - the symmetry reduction is specified in terms of $\{\gamma_{1A'}, \gamma_{2A'}\}$.
- The parameters of the 6d hCS theory are $\{k, \alpha_{A'}, \tilde{\alpha}_{A'}, \beta_{A'}, \kappa_1^A, \kappa_2^A, q\}$, up to redundancies.
- The symmetry reduction introduces the additional parameters {γ_{1A'}, γ_{2A'}}.

Conclusion 00

Symmetry reducing 6d hCS to 4d CS

• The relevant meromorphic 3-form is

$$\Omega\sim rac{1}{2}\,rac{\langle\pi d\pi
angle\wedge dx^{AA'}\wedge dx^{BB'}\epsilon_{AB}\pi_{A'}\pi_{B'}}{\langle\pilpha
angle\langle\pilpha
angle\langle\pilpha
angle^2}$$

• After symmetry reduction the 4d CS meromorphic 1-form is

$$egin{aligned} \omega &\sim (V_1 \wedge V_2) \,\lrcorner\, \Omega \sim rac{\langle \pi d \pi
angle \langle \pi \gamma_1
angle \langle \pi \gamma_2
angle}{\langle \pi lpha
angle \langle \pi ilde lpha
angle^2} \ &\sim rac{(\zeta - \gamma_1)(\zeta - \gamma_2)}{(\zeta - lpha)(\zeta - ilde lpha)} \, d\zeta \end{aligned}$$

where
$$\zeta = \pi_2/\pi_1$$
, $\gamma_{i\,A'} = (1, \gamma_i)_{A'}$, $\beta_{A'} = (0, 1)_{A'}$,
 $\alpha_{A'} = (1, \alpha)_{A'}$ and $\tilde{\alpha}_{A'} = (1, \tilde{\alpha})_{A'}$.

Boundary conditions in 4d CS

· What happens if we introduce the additional parameter in 4d CS and take

Conclusion

Conclusion 00

Boundary conditions in 4d CS

- The current-current deformation boundary conditions cannot be further deformed with A_± remaining in a Lagrangian subalgebra.
- Therefore, if we are to complete the diamond, we are prompted to consider more general boundary conditions.
- These boundary conditions can be found by symmetry reducing the 6d hCS boundary conditions.
- In the end, we find the four-parameter 2-field model introduced earlier, with the current-current deformation of the *G_k* WZW CFT as a special point.
- This is in contrast to the PCM plus WZ case, in which we always end up with 1-field model.
- Introducing a non-vanishing residue at infinity corresponds to having a non-trivial IR fixed point.

Conclusion 00

Boundary conditions in 4d CS

$$\langle\!\langle \mathbb{A}_+,\delta\mathbb{A}_-
angle\!
angle=\langle\!\langle \mathbb{A}_-,\delta\mathbb{A}_+
angle\!
angle$$

• Standard boundary conditions

- $\star \ \mathbb{A}_{\pm} \in \mathfrak{l}$ where \mathfrak{l} is a Lagrangian subalgebra:
 - the boundary conditions preserve gauge symmetry,
 - 2d IFT depends on a single field $g \in G$,
 - $-\,$ 4d CS gives a classically integrable model by construction,

• Generalised boundary conditions

- * $\mathbb{A}_{\pm} \in \mathfrak{l}_{\pm}$ where \mathfrak{l}_{\pm} are subspaces of \mathfrak{d} such that $\langle\!\langle \mathfrak{l}_+, \mathfrak{l}_- \rangle\!\rangle = 0$:
 - the boundary conditions do not preserve gauge symmetry,
 - 2d IFT depends on two fields $g \in G$ and $\widetilde{g} \in G$,
 - 4d CS gives a Lax connection, but it's not clear if it's enough for classical integrability.

[cf. Bassi, Lacroix]

In the other direction

- First localising from 6d hCS to a 4d IFT, and then symmetry reducing to a 2d IFT works without any further issues.
- The e.o.m. of the 4d IFT can be recast, as a consequence of the construction, as the 4d anti-self-dual Yang-Mills equations.
- This is a new case of Ward's conjecture:

"... many (and perhaps all?) of the ordinary and partial differential equations that are regarded as being integrable or solvable may be obtained from the self-dual gauge field equations (or its generalisations) by reduction."

6d hCS to 4d IFT to 2d IFT ○● Conclusion 00

The 4d IFT

• The explicit action of the 4d IFT is

$$\begin{split} \mathcal{S} &= -\frac{k}{8\pi} \int_{\mathbb{R}^4} \mathsf{vol}_4 \operatorname{tr} \left(j_1 \, \frac{1+\Lambda^t}{1-\Lambda^t} \, j_2 + \tilde{j}_1 \, \frac{1+\Lambda^t}{1-\Lambda^t} \, \tilde{j}_2 \right. \\ &\quad - 2q^{-1} j_1 \, \frac{1}{1-\Lambda^{-t}} \, \tilde{j}_2 + 2q \tilde{j}_1 \, \frac{1}{1-\Lambda^t} \, j_2 \right) \\ &\quad - \frac{k}{8\pi} \int_{\mathbb{R}^4 \times [0,1]} \mathsf{vol}_4 \wedge \mathsf{d}\xi \operatorname{tr} \left(j_{\xi} [j_1, j_2] + \tilde{j}_{\xi} [\tilde{j}_1, \tilde{j}_2] \right) \end{split}$$

where

• What is this model, what are its properties and what are its limits?

Summary

Introduction

- The diamond has been constructed for:
 - the PCM + WZ term,

The 2d IFTs

- the current-current deformation of the G_k WZW CFT.

6d hCS to 4d CS to 2d IFT

• Leads to generalised boundary conditions in 4d CS.

• Equations of motion of deformed integrable sigma models found as the symmetry reduction of 4d anti-self-dual Yang-Mills equations.

[Costello]

[Bittleston, Skinner]

[Cole, Cullinan, BH, Liniado, Thompson]

6d hCS to 4d IFT to 2d IFT

Future directions

- Can we generalise further?
 - What happens if Ω has zeroes?
 - What happens if \mathbb{CP}^1 is replaced by a more general Riemann surface?

• Can we find new 2d or 4d IFTs from the generalised boundary conditions?

• Can we gain new insights into Ward's conjecture?

Thank you!