Correlated spin systems:
a tensor network approach

Frank Verstraete



Overview

* Spin systems as tensor networks
— Partition functions
— Variational Matrix Product State methods
— Finite entanglement scaling

* Dualities & (Categorical) symmetries

* Topological phases of matter
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Partition functions as counting problems:
hard square constants

1-dimension:
— count number of strings of bits such that a 1 is surrounded by 0’s:

* E.g.00010010100000100

— Transfer matrix approach: evaluate following tensor network
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Identity matrix: sum over 0,1

L L b
— Number of configurationsis: Tr ([ 1 é ] ) = (1 +2\/5) + (1 _2\/5)

Hard square cst.
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* Problem is equivalent to finding leading eigenvalue of transfer matrix /
Matrix Product Operator:

* |s essentially equivalent problem to finding ground state of a local
quantum Hamiltonian, for which DMRG / variational MPS methods
provide the state of the art: MPS with bond dimension D




Variational uniform matrix product state algorithm

* Make use of left/right canonical forms to
reduce optimization to a sequence of effective
eigenvalue problems:

* Essence: enforce that residual of MPO applied
to MPS is orthogonal to tangent space of MPS
manifold; this leads to a Lanczos-type version
of corner transfer matrix (CTM) of Baxter;
optimization gives direct access to the free
energy and hence of entropy of the stat.
mech. Model without need of integration such

. H M
as in MC

Haegeman, FV, arXiv:1611.08519
Zauner-Stauber et al. ‘18



2 1.5030477

4 1.50304808246

§] 1.50304808247533218

8 1.5030480824753322642

10 1.503048082475332264322058

20 1.50304808247533226432206632947554

30 1.503048082475332264322066329475553689377

Baxter[128] | 1.503048082475332264322066329475553689385781

40 1.50304808247533226432206632947555368938578102

50 1.503048082475332264322066329475553689385781038609

60 1.503048082475332264322066329475553689385781038610303

70 1.503048082475332264322066329475553689385781038610305061

80 1.503048082475332264322066329475553689385781038610305062026556
Table 1: Free energy of the hard squares model; with bond dimension D = 80, we get 58

digits of precision.
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Ising model as tensor network
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Scaling hypothesis for MPS

* When simulating a critical point, a simultaneous scaling in the distance to the
critical point and in the bond dimension can be formulated
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FIG. 2. Collapse plots for the Potts model, calculated with MPS of bond dimension 21,31,42 50,60,81,99, and 120, for 96 different

temperatures lineary spaced between T = 0.9939 and T = 0.9954. Left magnetization; middle, comelation length; right, bipartite
entang lement entropy.

Vanhecke, Haegeman, Van Acoleyen, Vanderstraeten &FV ‘19
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FIG. 1. Residual entropy per site for the dimer cov-
ering problem on the cubic lattice. We have opti-
mized PEPS tensors for D = (2,3,4,5,6) and x =
(20,26, 34,44, 58,75,97,126, 164, 213,276); the same MPS
bond dimension was used for the contraction of the double-
and triple-layer (see supplementary material). The correla-
tion length is extracted from the double-layer boundary MPS.
A fit (black) on the D > 3 data reveals a clear z* power law
(see inset) for which the origin is to us an enigma.
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FIG. 2. Magnetization of the classical 3-D Ising model.
We have optimized PEPS tensors for D = (2,3,4) and
x = (10, 15, 20, 25, 30,40, 50) for 100 equally spaced tempera-
tures around the critical temperature. The same MPS bond
dimension was used for the contraction of the double- and
triple-layer (see supplementary material). To plot the data,
we shift the temperature by 7. = 4.511528 (obtained from
Monte-Carlo simulations®”?) and rescaled both axes with ap-
propriate powers 3 = 0.326419 and v = 0.629971 of £ (ob-
tained from the conformal bootstrap methodgo), with £ the
correlation length of the double-layer MPS environment. In
the inset we provide a partial data collapse (also showing
the abundance of data points), showing the crossing of the
rescaled magnetization at the critical temperature.

Vanhecke, Vanderstraeten, FV, PRL ‘22
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Heisenberg model / RP?
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FIG. 4. Extrapolated correlation length as a function of tempera-
ture for the (a) Heisenberg and (b) RP? models.



What about scaling of MPS for field theories?

gapped spin systems : Avv =1, A\ p <m ——— Exact
critical spin systems: Avv =1.A1p = 0
gapped QFTs: Ay = 0o Ajp <m Extrapolation,

scaling theory
critical QFTs: Apy — o0, Ajgp — 0

Let us look at )\.c}'ﬁr4 to see how the two scales manifest themselves in the
entanglement degrees of freedom

, | ., 1 |
L(¢) = 50,0 P + sppd~ 1’;[:!(/’4'

— Double scaling regime: entanglement scaling + continuum (lattice parameter)
should lead to both a c=1 contribution from UV AND a c=1/2 contribution
from IR

Vanhecke et al.’19
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Method 1/a. Year Ref.
Matrix Product States 11.064(20) | 2013 Milsted et al.
Renormalized Hamilt. Trunc. | 11.04(12) 2017 | Elias-Miro et al.
Borel resummation 11.23(14) 2018 Serone et al.
"z | Tensor network coarse-graining | 10.913(56) | 2019 Kadoh et al.
% ¢ Monte Carlo 11.055(20) | 2019 Bronzin et al.
© | Gilt-TNR 11.0861(90) | 2020 | Delcamp and Tilloy
$ ‘| MPS Scaling 11.094(5) [ 2020 | Vanhecke et al.
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What about systems with a Fermi surface?

V”
Nb
) Ta

http://www.phys.ufl.edu/fermisurface/

* Violation of area law:

L% 'logL 1 dS.dS
"n X :
(2 fan far P p
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PEPS and Fermi surfaces
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We conclude: favourable scaling of bond dimension as a function of precision
at halve filling => just as in 1D, Fermi surfaces can be captured by using a
scaling ansatz for tensor networks

— Important caveat: it has to be possible to open a gap using a perturbation

Mortier, Schuch, FV, Haegeman 22



A critical lattice model for

a Haagerup conformal field theory
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Figure 2. Finite entanglement scaling for the fixed point MPS
of the transfer matrix calculated using VUMPS with explicit
Hs anyonic symmetry. The results are consistent with a cen-

tral charge close to ¢ = 2.
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Figure 4. Spectra for the transfer matrix, twisted with

topological defects 1 (upper left), a (upper middle) and
p (bottom), numerically obtained with anyonic symmetry-
preserving exact diagonalization on L = 15 sites. The eigen-
values are labeled by their corresponding topological sec-
tors Z(Hsz) according to Table I. For the non-trivial twists,
the conformal spins are only integers up to a topological
spin correction (Table II). Upper right: the identity sector
on L = 18 sites. The first excited states of the vacuum
(A =2,5= -2 2) are circled in black.

Vanhove et al., PRL ‘22



Part II: Symmetries & Dualities

Tensor network is nothing but a discrete path integral

Crucial aspect are the symmetries (local / nonlocal / higher form) and
associated anomalies, ...

Recent years: a systematic study of all different representations of a given
tensor network / partition function : bimodule categories

— Unified treatment of TFTs and CFTs

Topological Field

Conformal Field
Theory

Theory

A

A 4

Modular Tensor
Categories

Quantum doubles

Critical & Anyonic
& String nets

spin systems




Dualities & (Categorical) symmetries

e Critical tensor networks exhibit new symmetries:
— Kramers-Wannier duality becomes a symmetry

Hi=JY XiXipn+K>» Z

Ho=JY Xi+K» ZiZin

* Intertwiner as Matrix product operator:




Symmetric operators remain local

Non-symmetric operators become nonlocal (string)

-

-



Kramers-Wannier duality of Ising model

KW is obtained by “gauging” the Z, symmetry and then disentangling
matter fields:

Z a —— Z la)|a, a4+ b,b){b|{a+ b

a,b=(0,1 a,b=0,1

a+b

Lootens et al., PRXQ 22



Jordan-Wigner transform as an MPO intertwiner

1
n;l(b)

n_1(a) n,, 1 (a+b)
* Local tensor: ﬂ--;:l : :
b
= ) Im_1(a))|ni(b)){niy 1 (a+ b)|(b]
a,b=0,1
« Transformed Hamiltonian:  He = —-IZ (fif_%f-f;+% + '-’f‘:r_%*’-‘-;r_% + h.c.
| —H(2f5f+if.+l - 1])

 JW s agenuine duality!

Lootens et al., PRXQ 22



Critical systems and categorical symmetries

e Can we construct tensor networks which automatically exhibit categorical
symmetries?

Topological Field Conformal Field
Theory Theory

Modular Tensor
Categories

Quantum doubles Critical & Anyonic
& String nets spin systems




MPO symmetries

e (Central ideas:

— Symmetries are represented by scale-invariant (possibly correlated)
operators O, (e.g. O, = U®N)

— Those operators form a closed algebra (as representation of that
symmetry), independent of the system size

— For 1D systems: such symmetries are guaranteed to be Matrix Product
Operator (MPO) symmetries, but do not necessarily form a group
(could be a fusion algebra); in 2D: PEPO algebras

3 _ Z N;’B y Cq]—[:]—[:]—[:]—[:]—[:]—[:]j
SHEID =

— Such MPOs generalize the representation theory of groups

* Development of character theory, irreps, ... [Bridgeman, Lootens, FV ’22]



Fuchs-Runkel-Schweigert machinery for bimodule categories

* Input: Moore-Seiberg data concerning the representations of a chiral algebra in
the form of a modular tensor category D (simple objects and fusion rules):

a® B = @ Ngﬁ’y
vE€D |

— Many different CFTs correspond to the same D; we need an additional piece of
data in the form of a right module category M to specify CFT:

Aca= P N, B.
BeM

* This M allows to define a CFT on any closed surface such that it
remains invariant under mapping class group

— M turns out to be a left module of a different category C
which is “equivalent” to D, and C defines the
topological defect lines in the CFT T

e Summary: CFT determined by a D,M,C such that M is a
(C,D) is an invertible bimodule category



F-symbols

- . _ ®:CxC—C
* Fusion categories C and D are endowed with functors: . » _, p

— Associativity of fusion rules implies the existence of F-symbols:

a B a b c
\ ./ \ \ / N/
J
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Big Pentagon equation

* Compatibility of those F-symbols leads to a set of 6 coupled equations:
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* Given fusion rules, (nontrivial) algorithms can be constructed to solve those
equations; the fusion rules are consistent iff there is at least 1 nontrivial solution



MPO symmetries : tensor formalism

Pulling through equation Zipper equation

K- -1
=

e 5D R

FF =Y FFF

Associativity

Lootens, Fuchs, Haegeman, Schweigert, FV ‘20



Six coupled pentagon equations: M(C,D) bimodules

O >
(FH () =2 F)F)(E)

(F2)(F?) = 2(F°)(F7)(F7)

Lootens, Fuchs, Haegeman, Schweigert, FV ‘20



e Central premise: given a MPO symmetry, all local symmetric operators can be
constructed in terms of the 3F symbols (generalized Clebsh-Gordan

coefficients)
I\\\\\\\\\H\\\

_Iq

— KEY INSIGHT: The structure factors of those symmetric observables are
completely determined by the 4F symbols and hence the fusion category D

* Different MPO algebras can have the same 4F symbols: those are obtained by
choosing different modules M / Morita-equivalent categories C

* Bonus: we can construct explicit MPO intertwiners between such theories

e nk & nk
s (o) Caltls (e

A A,j
C .= 2m p P o JAm

alg A R



Intertwiners and non-diagonal partition functions

* Such intertwiners can be used to construct all modular partition function
of stat. mech models (e.g. vertex vs RSOS)

PEPSpp PEPS m.,p
PEPSM?'D * PEPSM?'D c A
J L A _ .
1\ gl | PEPS'DJ'D A= ‘ Tabc 4 g b a 4
1 N 1 A a,b,c
PEPS v p PEPSAp | | PEPS\ 1 4 C

—f- - L

PEPS ¢ p

 Different modular invariant :




Dualities in quantum spin chains

e General scheme:

— Given a system with a MPO symmetry C and related bimodule M(C,D)
plus 4F symbol (only depending on D), all dual theories are specified
by the possible invertible bimodules M’(C’,D) having the same 4F

— The Hamiltonians of the dual theories are specified in terms of the
respective 3F Clebsch-Gordan coefficients, as are the intertwiners

* Note that the symmetries of the dual theories are specified by C
and C’ respectively, so can be different!

* Note also that a special case is obtained by MPOs which are just
tensor products of local symmetries

e PS: the same machinery can be used to construct quantum circuits
between Morita-equivalent string nets (2+1D TFT), to find all inequivalent
PEPS representations of string nets, to construct modular invariant
partition functions of stat mech models, ...



Examples

1. D = Vecz,: Zo symmetry
e M = Vec: transverse field Ising model

e M = Vecz,: Kramers-Wannier dual
e M =sVec/(y) >~ 1): free fermion

2. D =Vecz,xz,: L3 X Z5 symmetry
e M = Vec: spin 1 Heisenberg model, non-trivial SPT (Haldane phase)
e M = Vec?: Kennedy-Tasaki dual (trivial SPT), related to SPT entangler

3. D =lIsing: Zo symmetry + Kramers-Wannier self-duality
e M = Ising: critical transverse field Ising model
e M =lsing/(¢) ~ 1): massless free fermion

4. D = Ising™: (Z5 + Kramers-Wannier self-duality)®?
e M = Ising®: two decoupled critical transverse field Ising models
e M = Ising: critical XY model
e M =lsing/(y) ~ 1): massless Dirac fermion



8

. D = Vecz,: Z9 symmetry
o M = Vec: XXZ model
e M = sVec: t-J, model
. D = Rep(U,(slz)): quantum deformed SU(2) symmetry
e M = Rep(U,(slz)): solid-on-solid (SOS) models
e M = Vec: 6-vertex model (XXZ)
. D = Hj3: exotic fusion category, “Haagerup subfactor”
o« M=ty 200
o M= Mgzo:7
o M= M3}1: ?
. D = Rep(S3)
e M = Vec: XXZ model
e M = Rep(Z>):

H=> Zi1Zip1+ Zi1 XiZipa + AX

Interestingly, this model has a non-invertible Rep(S3) symmetry!
e M = Rep(Z3): modified 3-state Potts model
e M = Rep(S3): Rep(S3) anyonic spin chain



Duality is isometry on superselection sectors

Hilbert space and Hamiltonian split into superselection sectors, which have to match
between models:

HA:@HA,i and HB:@HB,Z'7
IHA:@[HA’Z' and [HB:@IHB,Z'-

although they need not be the same size (different degeneracies). Dualities are
iIsometries that interchange these sectors:

[Uz' : HA,Z' =3 HB,?L? S.5. [Uz(ﬂ‘iA,Z)[UI = [HB,i

Here, superselection sectors refer to symmetry charges and boundary conditions

Lootens, Delcamp et al., 22



Symmetry twisted boundary conditions locally change the bonds in the Hamiltonian

| +L_Jf+
it ﬁf‘ﬁ

in such a way that translation invariance is preserved up to local unitaries. The
symmetry operators now act as symmetry “tubes’”:

M ] lML—I—ll L M, J I Mo
AA" X, Xk k"
‘I 3 <Ly 3fvs
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¥
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These symmetry tubes span an algebra, known as the tube algebra. Superselection
sectors are irreducible representations of this algebra, which are described by the
Drinfel'd center Z(C) of the fusion category C that describes the symmetry operators.

We can similarly define intertwiner tubes, that will implement the duality operator in

the presence of a symmetry twist:

NLJ + @ L N1 J * u2
cABXX kK _

MIN = kX" b

A




These intertwiner tubes allow us to relate dual topological sectors labeled by
Z(C;) ~ Z(C;), which in general involves a permutation of the topological sectors.

The simplest example is the interchange of charges and fluxes for the Z5

Kramers-Wannier duality:
(periodic, Zo — even) — (periodic, Zo — even)
(periodic, Z3 — odd) — (anti-periodic, Zo — even)
) — (periodic, Z2 — odd)

(anti-periodic, Zo — odd) — (anti-periodic, Zo — odd)

(anti-periodic, Zo — even

These maps can be computed explicitly for any duality!*]

BILL, Delcamp, Verstraete, Dualities in one-dimensional quantum lattice models: topological sectors
2211.03777



e Given Hamiltonian H, its duals can be systematically constructed via identification
of underlying categorical structures describing its symmetries:

Funp(M,M) FUH@(MI,MI)

e Dualities and symmetries are realized as MPOs

e Generalization to higher dimensions is systematic[5] (6]

5] Delcamp, Tensor network approach to electromagnetic duality in (3+1)d topological gauge models,
JHEP 149 (2022)

bIDelcamp, Tiwari, Higher categorical symmetries and gauging in two-dimensional spin systems,
2301.01259



Topological phases of Matter

* Last decades has seen a revolution understanding
topological phases of matter

— Realization in Quantum Hall systems, observation of
Majorana fermions, ...

— Topological phases of matter: there is no LOCAL order parameter
distinguishing topological phases from trivial ones

* Phase is characterized by long range entanglement

* This entanglement can be used to built a fault-tolerant quantum
computer

* Tensor network approach: topological order is all about symmetries of the
entanglement degrees of freedom

— Landau paradigm of order parameters is recovered in symmetries of
LOCAL tensors



1D interacting SPT phases of matter: MPS

e Classification of phases of matter of 1-D spin chains under adiabatic paths
preserving a symmetry: manifold breaks into pieces (symmetry protected
topological order)

A

oF =0
T \8/

Cirac, Pérez-Garcia, FV, Wolf ‘08
Pollmann et al. ‘10;

Chen, Wen ‘11

Cirac, Pérez-Garcia, Schuch ‘11

— Different phases are characterized by projective representations of
physical symmetry group (H?(G,U(1)))

— In case of fermions: graded tensor algebras, and already topological
phases without imposing symmetries (Majorana / Kitaev spin chain)



Symmetries in PEPS

* Symmetries and topological order is much richer in 2 dimensions:
existence of anyons, Wilson loop operators, ...

— 2 dimensions is where the most surprising things can happen: 2 is low
enough to have a lot of entanglement (3 dimensions is already much
closer to mean field theory), but 2 is large enough to have nontrivial
statistics (e.g. fractional quantum Hall effect)

— All those exotic materials exhibit a special entanglement structure
which is locally reflected in symmetries of the microscopic tensors

— Probing entanglement reveals nonlocal order parameters: Landau
symmetry breaking, but now on the entanglement degrees of freedom



* Those symmetries give rise to Wilson loops that can be pulled through the
tensor network: tensor network representations of Levin-Wen models
(lattice versions of topological phases of matter with gappable
boundaries)
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e Critical spin systems are obtained as “strange correlators” of those
(conjecture of P. Fendley: correlators have to satisfy discrete
holomorphicity condition)



* Elementary excitations (anyons) in the system consist of end points of
those strings: those necessarily come in pairs (cfr. Fermions: simplest type
of anyon)
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in a Z2 gauge theory (Shenker/Fradkin == toric

Entanglement spectrum and confinement/deconfinement phase transition
ion)

by anyon condensation
code with string tens
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Topological Quantum Computation in the shadow world

We can identify a tensor product structure of logical qubits with the _:7&(].,_

i . o > —f = G
entanglement (virtual) degrees of freedom; e.g. Fibonacci string net _‘\f ?4‘:‘ “
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Freedman, Kitaev, Wang, ...



Application: Fibonacci Turaev-Viro error correcting code

‘erow’ circuit ‘resolve’ circuit

L0 N 3 e W

vy
FCHI!

F-move
(2-2 Pachner move)

Fjr_la

kpmny 1

F-move
F —& &
—_— E Fa nY FanY
= E LS LS
—
Pany

Measuring anyon charges

Schotte, Zhu, Burgelman, FV PRX 22



Conclusion

* Tensor networks yield natural language for representing topological and
critical systems



MPO symmetries and Levin-Wen models

* Tensors with MPO symmetries can be used to find tensor network
representations of Levin-Wen models (lattice versions of topological
phases of matter with gappable boundaries)



E\%
;
;
;

N
L

N
L

N
L

N
L

N
L

N
L

%
S
2
S
2
2
2

N1
L

N1
L

N1
L

N1
L

N1
L

N
L

N1
L

N1
L

s
2
&
2
s
2
s

N
L

N
L

N
L

N
L

N
L

N
L

%
S
“
£
%
£
7

N1
L

£

N1
L

N
L

S
I

N
L

N
L

83

N
L

N
L

N
L

N
L

vy
L /

%

N
L

v&
L /

£

N
L

v&
L /

N
L

o

S

N
L

=0
I

%

N
L

v&
L /

S

N
L

N
L

v&
L /

-
X
-
5
-
=

N
L

N
L

N
L

N
L

N
L

N
L

%
S
e
2
2
2
2

N
L

N
L

N
L

N
L

N
L

N
L

N
L

N
L

s
2
&
7
S
7
£

N1
L

L

\\/

N
L

N
L

N
L

L

\\/

£

N
L

/\\

M<e——

i
S
o

N
L

N
L

N
L

N
L

%

/\\

Mz<e——

N
L

:
;ﬁ
%




:
;
;

%vyv
™ /]

4. X}~/ X

N1
L

N
L

%

N
L

%v&v
N /1

S

N —1
L N X\

N
L

%%

N
L

S Y

%v&
NN KA/

%v

S

N
L
N

S

/]

\v
/\

%

N1
LN/ XN b A \J

£

//\

<

AN

N<e———1

.':'>~

|
]
|
|

|

B

B
i

"".’ ’ //\

'4

q
‘-
"

AW

N
L

Dy

K

N
L

N

%

=

3
N

R
A D

£

N
L

yv '
//\ d

N
L
N
/\\

L
N

N
L

N
ek

/]

SN N\
WA
.¢'

@
%




j%g
b

®v
)l

. X\

I
R

\\/
/\

N
L

&%
/]
(
N
/\

A &;X?(&X@v

/

\v
/\

S Y

)

O

N\ X
N

)
R

@z?x@x
@x%x@x

i)

.

4
' ~
'II

X

Y

Mz<e——
Mz<e——

Mz<e——

)
v

<V

O' —

%v

N —1
L

N
L

N O . % W
N N e e s N

NV v><\v/ ] N VoA
ﬁﬁ%ﬁo@%ﬁ&@%ﬁﬁﬁ

I
S
I

[ ——
/1\ %
AN

<V

MNzNe——1

LN/ XN b A \J

£

7
N<e———1

L/
X
)
N
OSE=
)

N
L

L 4. A \J—

MNze——1
V4
MNze——1

K

N
L

|

N
L

s
S

N A \J 1/ X N A S

N——1

N
L

D
Il -
=

A%

S
I
1

%
v@
-
/) (
=

N
L
N

AN

N —1
L
N —1
L

N —1
L
N —1
L

@;@:%(;x@x&;
\%fvz%v

)
5
I

N
L

%
§
%é



:
;
;

|

N
L

Mz<e——

)

v&
L /

|

£

/\@/\

<V

N
L

/\\

Nze——1

yv%\vy‘v

A DN XA ]

NV 5% NN

=
I

)

%%

N
S

.

SNt

X

v/

N
L

N

:Z—/ 1

%%

il

X

%

$%

§

.
OO
'll

<l

' s

%
AN

K

<V

L

Mz<e——

%

N

S Y

Mz<e——
/\\
Mz<e——

%v

/\/A\

|
\

§v

\
]

it
X7
3

AN

&_:

— |
|

MNe~——1
4
—

/ >
MN<~e~——1
L

%

J]N

i

£
S

/]

p

N AN} 1 XN N A b

N——1

—|

4
)

1
L

"

|

\//

L

£

N
L

)

=X

R

N
L

%SV/

|

:

|

R
A D

N —1
L
N —1
L

%
%



	Slide 1: Correlated spin systems:  a tensor network approach
	Slide 2: Overview
	Slide 3: Partition functions as counting problems:  hard square constants
	Slide 4
	Slide 5
	Slide 6: Variational uniform matrix product state algorithm
	Slide 7
	Slide 8: Ising model as tensor network
	Slide 9: Scaling hypothesis for MPS
	Slide 10
	Slide 11: Heisenberg model / RP2
	Slide 12: What about scaling of MPS for field theories?
	Slide 13
	Slide 14
	Slide 15: What about systems with a Fermi surface?
	Slide 16: PEPS and Fermi surfaces
	Slide 17: A critical lattice model for  a Haagerup conformal field theory 
	Slide 18: Part II: Symmetries & Dualities
	Slide 19: Dualities & (Categorical) symmetries
	Slide 20
	Slide 21: Kramers-Wannier duality of Ising model 
	Slide 22: Jordan-Wigner transform as an MPO intertwiner
	Slide 23: Critical systems and categorical symmetries
	Slide 24: MPO symmetries
	Slide 25: Fuchs-Runkel-Schweigert machinery for bimodule categories
	Slide 26: F-symbols
	Slide 27: Big Pentagon equation
	Slide 28: MPO symmetries : tensor formalism
	Slide 29: Six coupled pentagon equations: M(C,D) bimodules
	Slide 30
	Slide 31: Intertwiners and non-diagonal partition functions 
	Slide 32: Dualities in quantum spin chains
	Slide 33: Examples
	Slide 34
	Slide 35: Duality is isometry on superselection sectors
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Topological phases of Matter
	Slide 41: 1D interacting SPT phases of matter: MPS 
	Slide 42: Symmetries in PEPS
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Topological Quantum Computation in the shadow world
	Slide 47: Application: Fibonacci Turaev-Viro error correcting code
	Slide 48: Conclusion
	Slide 49: MPO symmetries and Levin-Wen models
	Slide 50
	Slide 51
	Slide 52
	Slide 53

