GENERALIZED BLACK HOLE ENTROPY IS VON NEUMANN ENTROPY

New Perspectives in CFT and Gravity DESY Theory Workshop September 29, 2023

Sam Leutheusser Princeton Gravity Initiative

Work with J. Kudler-Flam & G. Satishchandran: 2309.15897

$$S_{BH} = \frac{k_B c^3}{\hbar} \frac{A}{4G_N}$$

$$S_{BH} = \frac{k_B c^3}{\hbar} \frac{A}{4G_N}$$

Originally derived by thermodynamic arguments

[Bekenstein, Hawking,...]

$$S_{BH} = \frac{k_B c^3}{\hbar} \frac{A}{4G_N}$$

Originally derived by thermodynamic arguments

[Bekenstein, Hawking,...]

$$S_{gen} = S_{BH} + S_{out}$$

$$S_{BH} = \frac{k_B c^3}{\hbar} \frac{A}{4G_N}$$

Originally derived by thermodynamic arguments

[Bekenstein, Hawking,...]

"Improved" to generalized entropy

$$S_{gen} = S_{BH} + S_{out}$$

• Statistical Interpretation? $S_{BH} = \log \Omega_{BH}$?

$$S_{BH} = \frac{k_B c^3}{\hbar} \frac{A}{4G_N}$$

Originally derived by thermodynamic arguments

[Bekenstein, Hawking,...]

$$S_{gen} = S_{BH} + S_{out}$$

- Statistical Interpretation? $S_{BH} = \log \Omega_{BH}$?
- Some approaches:
 - Microstate Counting [Strominger, Vafa,...]

$$S_{BH} = \frac{k_B c^3}{\hbar} \frac{A}{4G_N}$$

Originally derived by thermodynamic arguments

[Bekenstein, Hawking,...]

$$S_{gen} = S_{BH} + S_{out}$$

- Statistical Interpretation? $S_{BH} = \log \Omega_{BH}$?
- Some approaches:
 - Microstate Counting [Strominger, Vafa,...]

 Symmetry!

$$S_{BH} = \frac{k_B c^3}{\hbar} \frac{A}{4G_N}$$

Originally derived by thermodynamic arguments

[Bekenstein, Hawking,...]

$$S_{gen} = S_{BH} + S_{out}$$

- Statistical Interpretation? $S_{BH} = \log \Omega_{BH}$?
- Some approaches:
 - Microstate Counting [Strominger, Vafa,...]

 Symmetry!
 - Euclidean Path Integral [Gibbons, Hawking,...]

$$S_{BH} = \frac{k_B c^3}{\hbar} \frac{A}{4G_N}$$

Originally derived by thermodynamic arguments

[Bekenstein, Hawking,...]

$$S_{gen} = S_{BH} + S_{out}$$

- Statistical Interpretation? $S_{BH} = \log \Omega_{BH}$?
- Some approaches:
 - Microstate Counting [Strominger, Vafa,...]

 Symmetry!
 - Euclidean Path Integral [Gibbons, Hawking,...]

 Static!

$$S_{BH} = rac{k_B c^3}{\hbar} rac{A}{4G_N}$$
 Widely Applicable!

- Originally derived by thermodynamic arguments
 [Bekenstein, Hawking,...]
- "Improved" to generalized entropy

$$S_{gen} = S_{BH} + S_{out}$$

- Statistical Interpretation? $S_{BH} = \log \Omega_{BH}$?
- Some approaches:
 - Microstate Counting [Strominger, Vafa,...]

 Symmetry!
 - Euclidean Path Integral [Gibbons, Hawking,...]

 Static!

 Explicit construction of an algebra of "dressed" observables outside a black hole horizon [Witten]

- Explicit construction of an algebra of "dressed" observables outside a black hole horizon [Witten]
- von Neumann entropy of dressed observables agrees with S_{gen} for AdS-Schwarzschild [Chandrasekaran, Penington, Witten (CPW)]

Entropy of AdS-Schwarzschild

Eternal AdS black hole and thermofield double

[Maldacena]

Entropy of AdS-Schwarzschild

Eternal AdS black hole and thermofield double

[Maldacena] Type III₁ vN algebra of quantum fields R CFT, CFT_R

[Maldacena]

Entropy of AdS-Schwarzschild

Eternal AdS black hole and thermofield double

Type III₁ vN algebra of quantum fields R CFT, CFT_R Emergent type III₁ vN algebra of single-trace operators at large N [SL, Liu]

Entropy of AdS-Schwarzschild

Eternal AdS black hole and thermofield double

[Maldacena]

Addition of CFT Hamiltonian deforms to type II_∞ ⇒ can compute entropy! [Witten; Chandrasekaran, Penington, Witten (CPW)]

- Explicit construction of an algebra of "dressed" observables outside a black hole horizon [Witten]
- von Neumann entropy of dressed observables agrees with S_{gen} for AdS-Schwarzschild [Chandrasekaran, Penington, Witten (CPW)]

- Explicit construction of an algebra of "dressed" observables outside a black hole horizon [Witten]
- von Neumann entropy of dressed observables agrees with S_{gen} for AdS-Schwarzschild [Chandrasekaran, Penington, Witten (CPW)]
- With an observer one finds S_{gen} for de Sitter

- Explicit construction of an algebra of "dressed" observables outside a black hole horizon [Witten]
- von Neumann entropy of dressed observables agrees with S_{gen} for AdS-Schwarzschild [Chandrasekaran, Penington, Witten (CPW)]
- With an observer one finds S_{gen} for de Sitter

- Crucial ingredient:
 - Mathematical: "Crossed Product"

- Explicit construction of an algebra of "dressed" observables outside a black hole horizon [Witten]
- von Neumann entropy of dressed observables agrees with S_{gen} for AdS-Schwarzschild [Chandrasekaran, Penington, Witten (CPW)]
- With an observer one finds S_{gen} for de Sitter

- Crucial ingredient:
 - Mathematical: "Crossed Product"
 - Physical: Gravitational constraint equations

- Explicit construction of an algebra of "dressed" observables outside a black hole horizon [Witten]
- von Neumann entropy of dressed observables agrees with S_{gen} for AdS-Schwarzschild [Chandrasekaran, Penington, Witten (CPW)]
- With an observer one finds S_{gen} for de Sitter

- Crucial ingredient:
 - Mathematical: "Crossed Product"
 - Physical: Gravitational constraint equations
- How generally applicable is this construction?

 Crossed product construction was applied to static subregions that admit equilibrium states

- Crossed product construction was applied to static subregions that admit equilibrium states
- Many black hole spacetimes do not admit such states, e.g.

- Crossed product construction was applied to static subregions that admit equilibrium states
- Many black hole spacetimes do not admit such states, e.g.
 - Asymptotically Flat Kerr

- Crossed product construction was applied to static subregions that admit equilibrium states
- Many black hole spacetimes do not admit such states, e.g.
 - Asymptotically Flat Kerr
 - Schwarzschild de Sitter

- Crossed product construction was applied to static subregions that admit equilibrium states
- Many black hole spacetimes do not admit such states, e.g.
 - Asymptotically Flat Kerr
 - Schwarzschild de Sitter
- Black holes formed from collapse will not be in equilibrium

Main Result

Perturbative Gravitational Constraints

Crossed Product with *modular* group on spacetimes with Killing Horizons

Type II vN Algebra with $S_{vN} = S_{gen}$

Talk Outline

- 1. vN Algebras and the Crossed Product
- 2. Quantization on Killing Horizons
- 3. Gravitational "Charges" and "Dressed" Operators
- 4. Asymptotically Flat Kerr Black Hole
- Schwarzschild de Sitter Black Hole
- 6. Future directions

• Bipartite quantum system: $\mathcal{H} = \mathcal{H}_L \otimes \mathcal{H}_R$

- Bipartite quantum system: $\mathcal{H} = \mathcal{H}_L \otimes \mathcal{H}_R$
- Local operator algebra $\mathcal{B}(\mathcal{H}_R)$

- Bipartite quantum system: $\mathcal{H} = \mathcal{H}_L \otimes \mathcal{H}_R$
- Local operator algebra $\mathcal{B}(\mathcal{H}_R)$
- Global state $|\Psi\rangle \in \mathcal{H} \rightarrow \text{reduced density matrix}$ $\rho_R \in \mathcal{B}(\mathcal{H}_R)$

- Bipartite quantum system: $\mathcal{H} = \mathcal{H}_L \otimes \mathcal{H}_R$
- Local operator algebra $\mathcal{B}(\mathcal{H}_R)$
- Global state $|\Psi\rangle \in \mathcal{H} \rightarrow \text{reduced density matrix}$ $\rho_R \in \mathcal{B}(\mathcal{H}_R)$
- von Neumann entropy $S_R = -\text{Tr}\rho_R \log \rho_R$

Local Algebras in QM

- Bipartite quantum system: $\mathcal{H} = \mathcal{H}_L \otimes \mathcal{H}_R$
- Local operator algebra $\mathcal{B}(\mathcal{H}_R)$
- Global state $|\Psi\rangle \in \mathcal{H} \rightarrow$ reduced density matrix $\rho_R \in \mathcal{B}(\mathcal{H}_R)$
- von Neumann entropy $S_R = -\text{Tr}\rho_R \log \rho_R$
- If $|\Psi\rangle$ is highly entangled, ρ_R and ρ_L will be full rank. In this highly entangled case can we define **modular flow**

$$\sigma_t(A) \equiv \Delta^{it} A \Delta^{-it}, \qquad A \in \mathcal{B}(\mathcal{H}), \qquad \Delta = \rho_L \otimes \rho_R^{-1}$$

Local Algebras in QM

- Bipartite quantum system: $\mathcal{H} = \mathcal{H}_L \otimes \mathcal{H}_R$
- Local operator algebra $\mathcal{B}(\mathcal{H}_R)$ Type I vN algebra
- Global state $|\Psi\rangle \in \mathcal{H} \to \text{reduced density matrix}$ $\rho_R \in \mathcal{B}(\mathcal{H}_R)$
- von Neumann entropy $S_R = -\text{Tr}\rho_R \log \rho_R$
- If $|\Psi\rangle$ is highly entangled, ρ_R and ρ_L will be full rank. In this highly entangled case can we define **modular flow**

$$\sigma_t(A) \equiv \Delta^{it} A \Delta^{-it}, \qquad A \in \mathcal{B}(\mathcal{H}), \qquad \Delta = \rho_L \otimes \rho_R^{-1}$$

 E.g. Rindler decomposition of Minkowski space

- E.g. Rindler decomposition of Minkowski space
- There do **not** exist $\mathcal{H}_L/\mathcal{H}_R$ on which fields localized in the L/R regions act

- E.g. Rindler decomposition of Minkowski space
- There do **not** exist $\mathcal{H}_L/\mathcal{H}_R$ on which fields localized in the L/R regions act
- There are **not** reduced density matrices for L/R

R

- E.g. Rindler decomposition of Minkowski space
- There do **not** exist $\mathcal{H}_L/\mathcal{H}_R$ on which fields localized in the L/R regions act
- There are **not** reduced density matrices for L/R
- There is **no** finite, well defined entanglement entropy for L or R

R

- E.g. Rindler decomposition of Minkowski space
- There do **not** exist $\mathcal{H}_L/\mathcal{H}_R$ on which fields localized in the L/R regions act
- There are **not** reduced density matrices for L/R
- There is **no** finite, well defined entanglement entropy for L or R
- But, the modular operator, Δ , and modular flow, σ_t , still exist.

- E.g. Rindler decomposition of Minkowski space
- There do **not** exist $\mathcal{H}_L/\mathcal{H}_R$ on which fields localized in the L/R regions act
- There are **not** reduced density matrices for L/R
- There is **no** finite, well defined entanglement entropy for L or R
- But, the modular operator, Δ , and modular flow, σ_t , still exist.

Type III Algebras and Black Holes

E.g. QFT on Schwarzschild

Type III Algebras and Black Holes

E.g. QFT on Schwarzschild

 A Type III algebra is associated to the exterior of any bifurcate Killing horizon!

• vN Algebra \mathfrak{U} + group G of automorphisms

- vN Algebra \mathcal{U} + group G of automorphisms
- New algebra: $\mathfrak{U}_{ext} = \mathfrak{U} \rtimes G$ acting on $\mathcal{H} \otimes L^2(G)$

- vN Algebra U + group G of automorphisms
- New algebra: $\mathfrak{U}_{ext} = \mathfrak{U} \rtimes G$ acting on $\mathcal{H} \otimes L^2(G)$
- Key theorem [Takesaki] For $\mathfrak U$ of type III_1 and $G=\mathbb R$ the modular automorphism group, $\mathfrak U_{ext}$ is type II_∞

- vN Algebra U + group G of automorphisms
- New algebra: $\mathfrak{U}_{ext} = \mathfrak{U} \rtimes G$ acting on $\mathcal{H} \otimes L^2(G)$
- Key theorem [Takesaki] For $\mathfrak U$ of type III_1 and $G=\mathbb R$ the modular automorphism group, $\mathfrak U_{ext}$ is type II_∞
- Type II vN algebras admit density matrices and vN entropies (but not pure states)

- vN Algebra U + group G of automorphisms
- New algebra: $\mathfrak{U}_{ext} = \mathfrak{U} \rtimes G$ acting on $\mathcal{H} \otimes L^2(G)$
- Key theorem [Takesaki] For $\mathfrak U$ of type III_1 and $G=\mathbb R$ the modular automorphism group, $\mathfrak U_{ext}$ is type II_∞
- Type II vN algebras admit density matrices and vN entropies (but not pure states)
- Crossed product can take us from an algebra for which entropy cannot be defined to one that admits a definition of entropy!

 No entanglement between the QFT and extra degree of freedom

$$|\widehat{\omega}\rangle = |\omega\rangle \otimes |f\rangle \in \mathcal{H} \otimes L^2(\mathbb{R})$$

 No entanglement between the QFT and extra degree of freedom

$$|\widehat{\omega}\rangle = |\omega\rangle \otimes |f\rangle \in \mathcal{H} \otimes L^2(\mathbb{R})$$

• Density matrix $\rho_{\widehat{\omega}}$ can be explicitly computed

[CLPW, Jensen, Sorce, Speranza]

 No entanglement between the QFT and extra degree of freedom

$$|\widehat{\omega}\rangle = |\omega\rangle \otimes |f\rangle \in \mathcal{H} \otimes L^2(\mathbb{R})$$

- Density matrix $\rho_{\widehat{\omega}}$ can be explicitly computed
- For slowly-varying f

$$S_{vN}(\rho_{\widehat{\omega}}) \approx \langle f|\mathbf{X}|f\rangle - S_{rel}(\omega|\omega_0) + S(\rho_f)$$

"Position" on $L^2(\mathbb{R})$

State used in crossed product algebra construction

"Classical" probability distribution $|f(X)|^2$

[CLPW, Jensen, Sorce, Speranza]

 No entanglement between the QFT and extra degree of freedom

$$|\widehat{\omega}\rangle = |\omega\rangle \otimes |f\rangle \in \mathcal{H} \otimes L^2(\mathbb{R})$$

- Density matrix $ho_{\widehat{\omega}}$ can be explicitly computed
- For slowly-varying f

$$S_{vN}(\rho_{\widehat{\omega}}) \approx \langle f|\mathbf{X}|f\rangle - S_{rel}(\omega|\omega_0) + S(\rho_f)$$

"Position" on $L^2(\mathbb{R})$

State used in crossed product algebra construction

"Classical" probability distribution $|f(X)|^2$

[CLPW, Jensen, Sorce, Speranza]

• For black holes, $\textbf{\textit{X}} = \delta^2 \textbf{\textit{A}}$ and one finds [Wall, CPW]

$$S_{vN}(\rho_{\widehat{\omega}}) \approx S_{gen}(\mathcal{B}) + S(\rho_f) + C$$

Bifurcation surface *

State-independent constant

 For simplicity, treat a free massless scalar field

- For simplicity, treat a free massless scalar field
- Equation of motion gives

$$\phi(f) = \Pi_H(s) + \Pi_{\mathcal{I}}(w)$$

$$\Rightarrow \mathcal{A}_{R \cup F} \simeq \mathcal{A}_{H^-} \otimes \mathcal{A}_{\mathcal{I}^-}$$

- For simplicity, treat a free massless scalar field
- Equation of motion gives $\phi(f) = \Pi_H(s) + \Pi_{\mathcal{I}}(w)$ $\Rightarrow \mathcal{A}_{R \cup F} \simeq \mathcal{A}_{H^-} \otimes \mathcal{A}_{\mathcal{I}^-}$
- One has algebra

$$[\Pi_H(y_1), \Pi_H(y_2)] = i\delta'(U_1 - U_2)\delta_{S^2}(x_1^A, x_2^A)$$

- For simplicity, treat a free massless scalar field
- Equation of motion gives $\phi(f) = \Pi_H(s) + \Pi_{\mathcal{I}}(w)$ $\Rightarrow \mathcal{A}_{R \cup F} \simeq \mathcal{A}_{H^-} \otimes \mathcal{A}_{\mathcal{I}^-}$
- One has algebra

$$[\Pi_{H}(y_{1}), \Pi_{H}(y_{2})] = i\delta'(U_{1} - U_{2})\delta_{S^{2}}(x_{1}^{A}, x_{2}^{A})$$

• The vacuum state $|\omega_0\rangle$ is thermal with $\beta=2\pi/\kappa$ on the subalgebra $\mathfrak{U}(H_R^-)$

- For simplicity, treat a free massless scalar field
- Equation of motion gives $\phi(f) = \Pi_H(s) + \Pi_{\mathcal{I}}(w)$ $\Rightarrow \mathcal{A}_{R \cup F} \simeq \mathcal{A}_{H^-} \otimes \mathcal{A}_{\mathcal{I}^-}$
- One has algebra

$$[\Pi_{H}(y_{1}), \Pi_{H}(y_{2})] = i\delta'(U_{1} - U_{2})\delta_{S^{2}}(x_{1}^{A}, x_{2}^{A})$$

- The vacuum state $|\omega_0\rangle$ is thermal with $\beta=2\pi/\kappa$ on the subalgebra $\mathfrak{U}(H_R^-)$
- On H⁻ modular flow is Killing time translation:

$$-\log \Delta_{\omega_0} \equiv \boldsymbol{H}_{\omega_0} = \beta \boldsymbol{F}_{\xi}^H, \quad \left[\boldsymbol{F}_{\xi}^H, \boldsymbol{\Pi}_H(f)\right] = i\boldsymbol{\Pi}_H(\mathcal{L}_{\xi}f)$$

• Consider $g_{ab}(\lambda)$, $\Phi(\lambda)$ solving $G_{ab}(\lambda) = 8\pi G_N T_{ab}(\lambda)$, $\square_{g(\lambda)} \Phi(\lambda) = 0$

- Consider $g_{ab}(\lambda)$, $\Phi(\lambda)$ solving $G_{ab}(\lambda) = 8\pi G_N T_{ab}(\lambda)$, $\square_{g(\lambda)} \Phi(\lambda) = 0$
- Expand around a known vacuum solution of Einstein's equation, i.e. $g_{ab}(0) = g_{ab}^0$, $\Phi(0) = 0$

- Consider $g_{ab}(\lambda)$, $\Phi(\lambda)$ solving $G_{ab}(\lambda) = 8\pi G_N T_{ab}(\lambda)$, $\square_{g(\lambda)} \Phi(\lambda) = 0$
- Expand around a known vacuum solution of Einstein's equation, i.e. $g_{ab}(0) = g_{ab}^0$, $\Phi(0) = 0$
- Write $\delta^n g_{ab} \equiv \frac{d^n g_{ab}}{d\lambda^n}\Big|_{\lambda=0}$ and $\delta^n \Phi \equiv \frac{d^n \Phi}{d\lambda^n}\Big|_{\lambda=0}$. One obtains free scalar and gravitons on g_{ab}^0 at $O(\lambda)$

- Consider $g_{ab}(\lambda)$, $\Phi(\lambda)$ solving $G_{ab}(\lambda) = 8\pi G_N T_{ab}(\lambda)$, $\square_{g(\lambda)} \Phi(\lambda) = 0$
- Expand around a known vacuum solution of Einstein's equation, i.e. $g_{ab}(0) = g_{ab}^0$, $\Phi(0) = 0$
- Write $\delta^n g_{ab} \equiv \frac{d^n g_{ab}}{d\lambda^n}\Big|_{\lambda=0}$ and $\delta^n \Phi \equiv \frac{d^n \Phi}{d\lambda^n}\Big|_{\lambda=0}$. One obtains free scalar and gravitons on g_{ab}^0 at $O(\lambda)$
- With $\phi \equiv \delta \Phi$, for any Killing vector X of g_{ab}^0 we get a "flux-charge relation" $F_X = \int_{\Sigma} dQ_X(g^0, \phi, \delta^2 g, \delta^2 \Phi)$, with $[\mathbf{F}_X, \boldsymbol{\phi}(f)] = i\boldsymbol{\phi}(\mathcal{L}_X f)$ [Hollands, Wald]

- Consider $g_{ab}(\lambda)$, $\Phi(\lambda)$ solving $G_{ab}(\lambda) = 8\pi G_N T_{ab}(\lambda)$, $\Box_{g(\lambda)} \Phi(\lambda) = 0$
- Expand around a known vacuum solution of Einstein's equation, i.e. $g_{ab}(0) = g_{ab}^0$, $\Phi(0) = 0$
- Write $\delta^n g_{ab} \equiv \frac{d^n g_{ab}}{d\lambda^n}\Big|_{\lambda=0}$ and $\delta^n \Phi \equiv \frac{d^n \Phi}{d\lambda^n}\Big|_{\lambda=0}$. One obtains free scalar and gravitons on g_{ab}^0 at $O(\lambda)$
- With $\phi \equiv \delta \Phi$, for any Killing vector X of g_{ab}^0 we get a "flux-charge relation" $F_X = \int_{\Sigma} dQ_X(g^0, \phi, \delta^2 g, \delta^2 \Phi)$, with $[\mathbf{F}_X, \boldsymbol{\phi}(f)] = i\boldsymbol{\phi}(\mathcal{L}_X f)$ [Hollands, Wald]
- Background isometries related to gravity charges!

Gravitational Charges

On a Killing horizon for the horizon Killing vector ξ

$$-4G_N\beta F_{\xi}^H = \delta^2 A_+ - \delta^2 A_-$$

Gravitational Charges

• On a Killing horizon for the horizon Killing vector ξ

$$-4G_N\beta F_{\xi}^H = \delta^2 A_+ - \delta^2 A_-$$

Gravitational Charges

• On a Killing horizon for the horizon Killing vector ξ

$$-4G_N\beta F_{\xi}^H = \delta^2 A_+ - \delta^2 A_-$$

• Operators in R should commute with $\delta^2 A_+$

• Quantize the second-order gravitational charges as independent degrees of freedom on $L^2(\mathbb{R})$

- Quantize the second-order gravitational charges as independent degrees of freedom on $L^2(\mathbb{R})$
- Flux-charge relation \Rightarrow only $\delta^2 A_-$ is an independent degree of freedom, $\delta^2 A_+ \equiv \delta^2 A_- 4G_N \beta F_{\xi}^H$

- Quantize the second-order gravitational charges as independent degrees of freedom on $L^2(\mathbb{R})$
- Flux-charge relation \Rightarrow only $\delta^2 A_-$ is an independent degree of freedom, $\delta^2 A_+ \equiv \delta^2 A_- 4G_N \beta F_{\xi}^H$
- Extended Hilbert space is $\mathcal{H} \otimes L^2(\mathbb{R}_{\delta^2 A})$

- Quantize the second-order gravitational charges as independent degrees of freedom on $L^2(\mathbb{R})$
- Flux-charge relation \Rightarrow only $\delta^2 A_-$ is an independent degree of freedom, $\delta^2 A_+ \equiv \delta^2 A_- 4G_N \beta F_{\xi}^H$
- Extended Hilbert space is $\mathcal{H} \otimes L^2(\mathbb{R}_{\delta^2 A_-})$
- Conjugate operator \boldsymbol{t}_- is such that $\left[\frac{\delta^2 A_-}{4G_N\beta}, \boldsymbol{t}_-\right] = i$

- Quantize the second-order gravitational charges as independent degrees of freedom on $L^2(\mathbb{R})$
- Flux-charge relation \Rightarrow only $\delta^2 A_-$ is an independent degree of freedom, $\delta^2 A_+ \equiv \delta^2 A_- 4G_N \beta F_{\xi}^H$
- Extended Hilbert space is $\mathcal{H} \otimes L^2(\mathbb{R}_{\delta^2 A_-})$
- Conjugate operator \boldsymbol{t}_- is such that $\left[\frac{\delta^2 A_-}{4G_N\beta}, \boldsymbol{t}_-\right] = i$
- "Dressed" operators that commute with $\delta^2 A_+$ $\Pi(s; t_-) \equiv e^{iF_{\xi}^H t_-} \Pi(s) e^{-iF_{\xi}^H t_-}$

• Algebra of "dressed" operators on $H_R^ \mathfrak{U}_{ext}(H_R^-) = \{ \Pi(s; t_-), \delta^2 A_- \}'', \quad \text{supp}(s) \subset H_R^-$

- Algebra of "dressed" operators on $H_R^ \mathfrak{U}_{ext}(H_R^-) = \{ \Pi(s; t_-), \delta^2 A_- \}'', \quad \text{supp}(s) \subset H_R^-$
- Unitarily equivalent to

$$\widehat{\mathfrak{U}}_{ext}(H_R^-) = \left\{ \boldsymbol{\Pi}(s), \frac{\delta^2 \boldsymbol{A}_-}{4G_N} + \beta \boldsymbol{F}_{\xi}^H \right\}^{\prime\prime}$$

- Algebra of "dressed" operators on $H_R^ \mathfrak{U}_{ext}(H_R^-) = \{ \Pi(s; t_-), \delta^2 A_- \}'', \quad \text{supp}(s) \subset H_R^-$
- Unitarily equivalent to

$$\widehat{\mathfrak{U}}_{ext}(H_R^-) = \left\{ \boldsymbol{\Pi}(s), \frac{\delta^2 A_-}{4G_N} + \beta \boldsymbol{F}_{\xi}^H \right\}^{\prime\prime}$$

• Since $\beta F_{\xi}^{H} = H_{\omega_{0}}$ on H^{-} and $\mathfrak{U}(H_{R}^{-})$ is type II_{1} , Takesaki's theorem implies $\mathfrak{U}_{ext}(H_{R}^{-})$ is type II_{∞}

- Algebra of "dressed" operators on $H_R^ \mathfrak{U}_{ext}(H_R^-) = \{ \Pi(s; t_-), \delta^2 A_- \}'', \quad \text{supp}(s) \subset H_R^-$
- Unitarily equivalent to

$$\widehat{\mathfrak{U}}_{ext}(H_R^-) = \left\{ \boldsymbol{\Pi}(s), \frac{\delta^2 A_-}{4G_N} + \beta \boldsymbol{F}_{\xi}^H \right\}^{\prime\prime}$$

- Since $\beta F_{\xi}^{H} = H_{\omega_{0}}$ on H^{-} and $\mathfrak{U}(H_{R}^{-})$ is type III_{1} , Takesaki's theorem implies $\mathfrak{U}_{ext}(H_{R}^{-})$ is type II_{∞}
- Thus, perturbative gravitational constraints deform the algebra on the "right" half of Killing horizon from type III₁ to type II∞ allowing vN entropies to be defined

• Consider the region $R \cup F$

• Field algebra decomposition $\mathcal{A}_{R \cup F} \simeq \mathcal{A}_{H^-} \otimes \mathcal{A}_{\mathcal{I}^-}$

- Field algebra decomposition $\mathcal{A}_{R \cup F} \simeq \mathcal{A}_{H^-} \otimes \mathcal{A}_{\mathcal{I}^-}$
- No equilibrium state exists on R!

- Field algebra decomposition $\mathcal{A}_{R \cup F} \simeq \mathcal{A}_{H^-} \otimes \mathcal{A}_{\mathcal{I}^-}$
- No equilibrium state exists on R!
- Instead, use the affine time vacuum on H^- and advanced time vacuum on \mathcal{I}^- to obtain a GNS Hilbert space with von Neumann algebra $\mathfrak{U}(R \cup F) \simeq \mathfrak{U}(H^-) \otimes \mathfrak{U}(\mathcal{I}^-)$

- Field algebra decomposition $\mathcal{A}_{R \cup F} \simeq \mathcal{A}_{H^-} \otimes \mathcal{A}_{\mathcal{I}^-}$
- No equilibrium state exists on R!
- Instead, use the affine time vacuum on H^- and advanced time vacuum on \mathcal{I}^- to obtain a GNS Hilbert space with von Neumann algebra $\mathfrak{U}(R \cup F) \simeq \mathfrak{U}(H^-) \otimes \mathfrak{U}(\mathcal{I}^-)$
- Algebra in R, $\mathfrak{U}(R) \simeq \mathfrak{U}(H_R^-) \otimes \mathfrak{U}(\mathcal{I}^-)$ is type III₁

- Field algebra decomposition $\mathcal{A}_{R \cup F} \simeq \mathcal{A}_{H^-} \otimes \mathcal{A}_{\mathcal{I}^-}$
- No equilibrium state exists on R!
- Instead, use the affine time vacuum on H^- and advanced time vacuum on \mathcal{I}^- to obtain a GNS Hilbert space with von Neumann algebra

$$\mathfrak{U}(R \cup F) \simeq \mathfrak{U}(H^-) \otimes \mathfrak{U}(\mathcal{I}^-)$$

- Algebra in R, $\mathfrak{U}(R) \simeq \mathfrak{U}(H_R^-) \otimes \mathfrak{U}(\mathcal{I}^-)$ is type III₁
- Flux-charge relations

$$\delta^{2} A_{+} - \delta^{2} A_{-} = -4G_{N} \beta \mathbf{F}_{\xi}^{H}, \qquad \delta^{2} \mathbf{J}_{+} - \delta^{2} \mathbf{J}_{-} = \mathbf{F}_{\psi}^{H}$$
$$\xi = \frac{\partial}{\partial t} + \Omega_{H} \frac{\partial}{\partial \psi}$$

• "Dressed" observables on H_R^-

$$\Pi_H(s; \boldsymbol{t}_-, \boldsymbol{\psi}) \equiv e^{i\boldsymbol{F}_{\psi}^H \boldsymbol{\psi}} e^{i\boldsymbol{F}_{\xi}^H \boldsymbol{t}_-} \Pi(s) e^{-i\boldsymbol{F}_{\xi}^H \boldsymbol{t}_-} e^{-i\boldsymbol{F}_{\psi}^H \boldsymbol{\psi}}$$

• "Dressed" observables on H_R^-

$$\Pi_H(s; \boldsymbol{t}_-, \boldsymbol{\psi}) \equiv e^{iF_{\psi}^H \boldsymbol{\psi}} e^{iF_{\xi}^H \boldsymbol{t}_-} \Pi(s) e^{-iF_{\xi}^H \boldsymbol{t}_-} e^{-iF_{\psi}^H \boldsymbol{\psi}}$$

Algebra of "dressed" operators in R

$$\mathfrak{U}_{ext}(R) = \{ \boldsymbol{\Pi}_{H}(s; \boldsymbol{t}_{-}, \boldsymbol{\psi}), \boldsymbol{\Pi}_{I}(w), \delta^{2} \boldsymbol{A}_{-} \}^{"}$$

• "Dressed" observables on H_R^-

$$\Pi_H(s; \boldsymbol{t}_-, \boldsymbol{\psi}) \equiv e^{iF_{\psi}^H \boldsymbol{\psi}} e^{iF_{\xi}^H \boldsymbol{t}_-} \Pi(s) e^{-iF_{\xi}^H \boldsymbol{t}_-} e^{-iF_{\psi}^H \boldsymbol{\psi}}$$

- Algebra of "dressed" operators in R $\mathfrak{U}_{ext}(R) = \{ \boldsymbol{\Pi}_{H}(s; \boldsymbol{t}_{-}, \boldsymbol{\psi}), \boldsymbol{\Pi}_{I}(w), \delta^{2} \boldsymbol{A}_{-} \}''$
- Tensor product of II_{∞} on H_R^- and I_{∞} on \mathcal{I}^-

• "Dressed" observables on H_R^-

$$\Pi_H(s; \boldsymbol{t}_-, \boldsymbol{\psi}) \equiv e^{iF_{\psi}^H \boldsymbol{\psi}} e^{iF_{\xi}^H \boldsymbol{t}_-} \Pi(s) e^{-iF_{\xi}^H \boldsymbol{t}_-} e^{-iF_{\psi}^H \boldsymbol{\psi}}$$

- Algebra of "dressed" operators in R $\mathfrak{U}_{ext}(R) = \{ \boldsymbol{\Pi}_H(s; \boldsymbol{t}_-, \boldsymbol{\psi}), \boldsymbol{\Pi}_{\mathcal{I}}(w), \delta^2 \boldsymbol{A}_- \}''$
- Tensor product of II_{∞} on H_R^- and I_{∞} on \mathcal{I}^-
- For classical-quantum states with slowly-varying wavefunctions for the charges, the von Neumann entropy gives the generalized black hole entropy!

• Decomposition $\mathcal{A}_{R_1 \cup F_1 \cup F_2} \simeq \mathcal{A}_{H_1^-} \otimes \mathcal{A}_{H_2^-}$

- Decomposition $\mathcal{A}_{R_1 \cup F_1 \cup F_2} \simeq \mathcal{A}_{H_1^-} \otimes \mathcal{A}_{H_2^-}$
- No equilibrium state in R₁ due to horizons of different temperatures!

- Decomposition $\mathcal{A}_{R_1 \cup F_1 \cup F_2} \simeq \mathcal{A}_{H_1^-} \otimes \mathcal{A}_{H_2^-}$
- No equilibrium state in R₁ due to horizons of different temperatures!
- Instead, use vacuum state for affine time translations along each horizon separately

• Global constraint $\Rightarrow [F_{\xi}, \phi(f)] = 0$

- Global constraint $\Rightarrow [F_{\xi}, \phi(f)] = 0$
- Must add an observer to obtain nontrivial algebra

- Global constraint $\Rightarrow [F_{\xi}, \phi(f)] = 0$
- Must add an observer to obtain nontrivial algebra
- Flux-charge relations on each horizon \Rightarrow algebra $\mathfrak{U}_{ext}(R) = \mathfrak{U}_{ext}(H_{1,R}^-) \otimes \mathfrak{U}_{ext}(H_{2,L}^-)$

- Global constraint $\Rightarrow [F_{\xi}, \phi(f)] = 0$
- Must add an observer to obtain nontrivial algebra
- Flux-charge relations on each horizon \Rightarrow algebra $\mathfrak{U}_{ext}(R) = \mathfrak{U}_{ext}(H_{1,R}^-) \otimes \mathfrak{U}_{ext}(H_{2,L}^-)$
- "Matching condition" $\epsilon = -\frac{\delta^2 A^{\frac{1}{2}}}{4G_N \beta_1} \frac{\delta^2 A^{\frac{2}{2}}}{4G_N \beta_2}$

Resulting algebra is type II_∞

- Resulting algebra is type II_∞
- For classical-quantum states slowly varying in both perturbed areas, the von Neumann entropy is the generalized entropy

$$S_{gen}(\widehat{\omega}) = \widehat{\omega} \left(\frac{A_{B_1}}{4G_N} \right) + \widehat{\omega} \left(\frac{A_{B_2}}{4G_N} \right) + S_{vN} \left(\omega \Big|_{R} \right)$$

Future directions

- Construction for general horizon cuts and applications to the generalized second law
- Understand notions of entropy associated to general bulk surfaces [Jensen, Sorce, Speranza '23]
- Subtleties for near-extremal black holes?
- Recovering a type I algebra from the bulk perspective?

Thank you!