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Emergent type _y
I1l; vN algebra //
NN of single-trace =
P ® operators at
\ large N [sL, Liy]

Addition of CFT Hamiltonian deforms to type Il.. = can compute entropy!
[Witten; Chandrasekaran, Penington, Witten (CPW)]
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observables outside a black hole horizon witen

- von Neumann entropy of dressed observables
agrees with 5., for AdS-Schwarzschild ichandrasekaran

Penington, Witten (CPW)]

- With an observer one finds S, for de Sitter

[Chandrasekaran, Longo, Penington, Witten (CLPW)]

- Crucial ingredient:
- Mathematical: “Crossed Product”
- Physical: Gravitational constraint equations

- How generally applicable is this construction?
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Potential Obstructions

- Crossed product construction was applied to
static subregions that admit equilibrium states

- Many black hole spacetimes do not admit such
states, e.q.
- Asymptotically Flat Kerr
- Schwarzschild de Sitter

- Black holes formed from collapse will not be in
equilibrium



Main Result

Perturbative Gravitational Constraints

!

Crossed Product with modular group on
spacetimes with Killing Horizons

|

Type Il vN Algebra with S,y = Sgen
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Talk Outline

VN Algebras and the Crossed Product
Quantization on Killing Horizons

Gravitational “Charges” and “Dressed” Operators
Asymptotically Flat Kerr Black Hole
Schwarzschild de Sitter Black Hole

Future directions
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- E.g. Rindler decomposition ™.

of Minkowski space . F
- There do not exist #, /Hp )
on which fields localized in L R
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- There are not reduced ] \-/mpaGIglglehbra
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- There is no finite, well-
defined entanglement entropy for L or R

- But, the modular operator, A, and modular flow, o;,
still exist.
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Type lll Algebras and Black Holes
- E.g. QFT on Schwarzschild

Type llI;
VN algebra

- A Type lll algebra is associated to the exterior of
any bifurcate Killing horizon!
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Crossed Product

- VN Algebra U + group G of automorphisms
-New algebra: U,,, = U x G actingon H @ L?(G)
. Kev theorem [makesai
For U of type Ill; and ¢ = R the modular
automorphism group, U,,; is type Il.,

- Type |l vN algebras admit density matrices and
VN entropies (but not pure states)

- Crossed product can take us from an algebra for
which entropy cannot be defined to one that
admits a definition of entropy!
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Classical-Quantum States

- No entanglement between the QFT and extra
degree of freedom

|0) = |w) ® |f) € H Q L*(R)
- Density matrix p; can be explicitly computed
. For SIOWIy'Varying ]: [CLPW, Jensen, Sorce, Speranza]

Son(03) = {FIXIf) = Srer(@|wo) + S(pf)

AT A

“Position” on L*(R)  gtate used in “Classical” probability
crossed product distribution |f(X)|?
algebra construction

- For black holes, X = §%4 and one finds wai, cew;
Son(Pa) = Sgen(B) + S(pf) + O~

Bifurcation surface State-independent constant
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- For simplicity, treat a free °
massless scalar field

- Equation of motion gives

¢(f) = Myx(s) + My (w)
= Agur = Ay~ Q Aj-

- One has algebra My(s)

Iy (), Oy (y,)] = i6'(U; — Uy)ds2 (x1 )y X ) i

- The vacuum state |w,) is thermal with f = 2n/k
on the subalgebra U(Hy)

- On H~ modular flow is Killing time translation:

H
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Perturbation Theory
- Consider g,, (1), ®(A) solving
Gap(A) = 8mGyTop (1), Oy ®(A) =0
- Expand around a known vacuum solution of

Einstein’s equation, i.e. g,;,(0) = g2, ®(0) = 0

- Write 6"g,p = ddi‘;b and §"d = &2 One

A=0 dA™ [3=0
obtains free scalar and gravitons on g2, at 0(1)

- With ¢ = 6, for any Killing vector X of g, we get a
“flux-charge relation” Fy = [, dQx(g°, ¢,6%g,6°®),
with [Fy, p(f)] = ip(Lxf) [Hollands, Wald]

- Background isometries related to gravity charges!
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- On a Killing horizon for the horizon Killing vector ¢

—4GyPFs = §2A, — 6%A_

+

52A_ !

- Operators in R should commute with §2A4,
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independent degrees of freedom on L%(R)

- Flux-charge relation = only §2A_ is an independent
degree of freedom, 6?4, = 6°A_ — 4Gy BF{
- Extended Hilbert space is ' @ L?(Rg2, )

5%A_
4GNpB’
- “Dressed” operators that commute with 624,

. H . - H
II(s;t_) = etfe t‘H(S)e_lFf t-

- Conjugate operator t_ is such that [ t_] = |



Dressed Observables

- Algebra of “dressed” operators on Hy
U,,..(Hg) = {l(s;t_),6%A_}", supp(s) c Hy



Dressed Observables

- Algebra of “dressed” operators on Hy
U,,..(Hg) = {l(s;t_),6%A_}", supp(s) c Hy
- Unitarily equivalent to

1/Iext(HI;) — {H(S);

2

4Gy

H
+,BF§}



Dressed Observables

- Algebra of “dressed” operators on Hy
U,,..(Hg) = {l(s;t_),6%A_}", supp(s) c Hy
- Unitarily equivalent to

1/Iext(HI;) — {H(S)» 4Gy + ,BF?}

- Since fF{ = H, on H™ and U(Hy) is type lll,,
Takesaki’s theorem implies U, (Hy) is type Il

2




Dressed Observables

- Algebra of “dressed” operators on Hy
U,,..(Hg) = {l(s;t_),6%A_}", supp(s) c Hy
- Unitarily equivalent to

1/Iext(HI;) — {H(S): 4Gy + IBF?}

- Since fF{ = H, on H™ and U(Hy) is type lll,,
Takesaki’s theorem implies U, (Hy) is type Il

- Thus, perturbative gravitational constraints deform
the algebra on the “right” half of Killing horizon from
type lll; to type ll., allowing vN entropies to be
defined

2
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Asymptotically Flat Kerr Black Hole

- Field algebra decomposition Az r =~ Ay- @ Ag-
- No equilibrium state exists on R!

- Instead, use the affine time vacuum on H~ and
advanced time vacuum on 7~ to obtain a GNS
Hilbert space with von Neumann algebra

URUF)=UH") QUI)

- Algebra in R, U(R) =~ U(Hy) ® U(77) is type Il

- Flux-charge relations
62A, — 6%A_ = —4GyPBF?, §%], — 6%]J_ = Fy,

—0+Q 0
S =3 9y
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Asymptotically Flat Kerr Black Hole

- “Dressed” observables on Hy
M, (s;t_, ) = eithpeiFIgt_H(S)e—iFlgt_e—iF,IZIIJ
- Algebra of “dressed” operators in R
uext (R) — {HH (S; t_, II)), H7 (W), 52‘4—}”
- Tensor product of I, on H; and |, on 7~

- For classical-quantum states with slowly-varying
wavefunctions for the charges, the von Neumann
entropy gives the generalized black hole entropy!
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Schwarzschild de Sitter

j—i—

¢ DeCompOSIthn C/lR1UF1UF2 = qul— ® CAHZ_
- No equilibrium state in Ry due to horizons of
different temperatures!

- Instead, use vacuum state for affine time
translations along each horizon separately
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Schwar_zschild de Sitter

I IR I

- Global constraint = |F¢, ¢(f)]|=0

- Must add an observer to obtain nontrivial algebra
- Flux-charge relations on each horizon = algebra
1Iext (R) — 1lext (Hl_,R) %Y uext (Hz_,L)

5241 5242

4GNPB1 4GNP2

- “Matching condition” € = —



Schwar_zschild de _Sitter

I IR I

- Resulting algebra is type Il.,



Schwar_zschild de Sitter

I IR I

- Resulting algebra is type Il.,

- For classical-quantum states slowly varying in
both perturbed areas, the von Neumann entropy
is the generalized entropy

A~ A~ AB1 ~ ABz
Sgen(®) = & (4GN) T (4GN) t Son (“"R)




Future directions

- Construction for general horizon cuts and
applications to the generalized second law

- Understand notions of entropy associated to
general bUIk Su rfaCeS [Jensen, Sorce, Speranza 23]

- Subtleties for near-extremal black holes?

- Recovering a type | algebra from the bulk
perspective?



Thank you!






