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Holographic Entanglement Entropy: (Ryu & Takayanagi 06)

* CFT dof within A described by density matrix pa = T"“A(W> <¢D

—> calculate von Neumann entropy: S(A) = —T'r [pa log pa]
AdS boundary
boundary
conformal field
theory
Bekenstein-
AdS bulk Hawking
Spacetime A formula
S(A) = mi

4G N



Holographic Entanglement Entropy: (Ryu & Takayanagi 06)

AdS boundary A
2 boundary
conformal field
theory
v

Bekenstein-
AdS bulk Hawking
spacetime | AV formula
S(A) = min
v~y 4G

 holographic EE is a fruitful forum for bulk-boundary dialogue:
—> new lessons about quantum field theories

—> new lessons about quantum gravity
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black hole horizons and which are predicted by general relativity.”
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Complexity:

e computational complexity: how difficult is it to implement a task? eg,
how difficult is it to prepare a particular quantum state?
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Complexity:

e computational complexity: how difficult is it to implement a task? eg,
how difficult is it to prepare a particular quantum state?

e quantum circuit model:
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unitary operator —J L simple"reference state
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simple gates
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e quantum circuit model:
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the desired target state (ie, need to find optimal circuit)




Complexity:

e computational complexity: how difficult is it to implement a task? eg,
how difficult is it to prepare a particular state?

e quantum circuit model:

Mb) B U ‘w()) unentangled
unitary operator —J L simple"reference state

built from set of €8, [00000 - - - 0)
simple gates

tolerance: ‘ |¢> — ‘¢>Target |2 g E

e complexity = minimum number of gates required to prepare
the desired target state (ie, need to find optimal circuit)

* does the answer depend on the choices?? YES!!



Holographic Complexity:

e complexity=volume: evaluate proper volume of extremal codim-one

surface connecting Cauchy surfaces in boundary theory (cf holo EE)
(Stanford & Susskind)

Complexity = Action

Complexity = Volume
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e complexity=action: evaluate gravitational action for Wheeler-DeWitt

patch = domain of dependence of bulk time slice connecting
Cauchy slices in CFT (Brown, Roberts, Swingle, Susskind & Zhao)

boundary

* both of these gravitational “observables” probe the black hole
interior (at arbitrarily late times on boundary)
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e complexity=volume: evaluate proper volume of extremal codim-one

surface connecting Cauchy surfaces in boundary theory (cf holo EE)
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Complexity = Volume Complexity = Action
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e complexity=action: evaluate gravitational action for Wheeler-DeWitt
patch = domain of dependence of bulk time slice connecting

boundary Cauchy slices in CFT  (Brown, Roberts, Swingle, Susskind & Zhao)

* both of these gravitational “observables” probe the black hole
interior (at arbitrarily late times on boundary)




Holographic Complexity:

Complexity = Volume Complexity = Action
\___/
Er— / «lR tr— iR
5\\%/ ‘
_ V(B) ) | / \ IWDW
() = | g]\\\ SV = T
N\ /// \
~. P N
e [inear growth (at late times) (d = boundary dimension)
dC 81
e = M (planar) —dCA = %

Susskind, Brown, . ..

* “switchback” effect: complexity o< . \ti — t@'+1’ — 2nt,

—> probe black holes with shock waves Stanford, Susskind, . .
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Holographic Complexity:

Complexity = Volume Complexity = Action

tp— «lR tr—> «ipR

Ambiguities in defining complexity?

* reference state? gate set? weighting of gates? . ...
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Complexity=Volume Revisited:

e complexity=volume: evaluate proper volume of extremal codim-one

surface connecting Cauchy surfaces in boundary theory (cf holo EE)
(Stanford & Susskind)
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Two steps: 1) find a special surface

2) Evaluate geometric feature of surface

* yields “nice” diffeomorphism invariant observable
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So what?

1) Observables grow linearly with time at late times:

Tli_)II;O OF, 55, (7)) ~ Py T

where in large T limit, the constant P,, &« mass

2) Observables exhibit “switchback effect”, ie, universal time delay in
response to shock waves falling into the dual black hole
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So what?

1) Observables grow linearly with time at late times:

TILH;O OFl,EFQ (T) ~ oo T

where in large T limit, the constant P,, &« mass

2) Observables exhibit “switchback effect”, ie, universal time delay in
response to shock waves falling into the dual black hole

[
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 universality displayed by observables suggests that all of them
are equally viable candidates for holographic complexity!!



Simple Example: F, = Fy, =14+ A L* CypeqC**

: Vi r\ 41
* generalized “volume”: Cgep, = CoL / do (f) —F(r) o2+ 207 a(r)

where  f(r) = ( —ﬁ) and a(r) =1+ ()

L2 rd r
planar AdS black hole A A=dd—-1)*d-2)A
. . : — r ¢t
* “gauge fix” worldvolume coordinate: /—f(r )02 + 207 = a(r) (f)
“ ” ’ . ngen 1
e conserved “momentum”: P, =7 — f(r)0 o) =P

* profile determined by classical mechanics problem
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Simple Example: F, = Fy, =14+ A L* CypeqC**

: Vi r\ 41
* generalized “volume”: Cgep, = CoL / do (f) —F(r) o2+ 207 a(r)

where  f(r) = ( —ﬁ) and a(r) =1+ ()

L2 rd r
planar AdS black hole A A=dd—-1)*d-2)A
. . : — r ¢t
* “gauge fix” worldvolume coordinate: /—f(r )02 + 207 = a(r) (f)
“ ” ’ . ngen 1
e conserved “momentum”: P, =7 — f(r)0 o) =P

* profile determined by classical mechanics problem

v

2 4 ﬁ(fr) — P2 with (7(?") = —f(T)QQ(T) (_




Simple Example: F, = Fy, =14 X\ L* CypegC*®

* profile determined by classical mechanics problem

P2+ U(r)=P2 with U(r) = —f(r)a(r) (7’)2(d‘1)

v

U Er)

* turning point:

~




Simple Example: I}

* profile determined by class

72 4+ U(r) = P2
Ugr)

* turning point:
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* profile determined by classical mechanics problem

v
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U Er)

late-time behaviour
controlled by extremum




Simple Example: F, = Fy, =14 X\ L* CypegC*®

* profile determined by classical mechanics problem

v

2 | 77 2 : - 2 7\ 2d=1)

i2+U(r) = P2 with U(r) = —f(r)a®(r) ()

U(r)
A late-time behaviour

controlled by extremum
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Complexity = Almost Anything:

« recall simple example: Fy = Fy = 1+ X\ L* CypeqC**?

o~

* coupling cannot be “too large”, ie, N=d(d—1)2(d—2) )

47 - 13v13
3 ~

i T T T T T T T T T T T T T T T

1.5-

—1 < 5\ < Xcrit — 016

M I I |

no extrema for A > A\, 41

B 5\220

- 5\2 = j\crtl
T 5\2 — 5\crt1 T 10_2

- 5\2 — 5\crtl + 10—1

00 05 10 15

r = rd / LAw2



Complexity = Almost Anything:
 coupling for curvature invariants should not be too large

v~ 47 — 13v13
recall —1 < X<\, = 3 ~ .016
15— € Thax ]
1071 1 " .
_ | == )\2 - )\crtl — 10_6
T
X? — Xcrtl = 10_4
5 «— | 2
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O_ PRI T R S | 1_. P00 0§ % 6 g p 0§ 0§ @ ¢ G 5§ ¢ p§ ]
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

P,
only reach some maximum t,,,, as P, is scanned



Complexity = Almost Anything:
 coupling for curvature invariants should not be too large

~ 47 — 13v13
recall —1 < X<\, = 3 ~ .016
15— € Thax ]
10+ 1 " -
I = )\2 — )\crtl — 10_6
T I
i X? — Xcrtl = 10_4
5| — o 2
I - AZ — )\crtl = 10~
O_ I A T A T j : : R TS
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

only reach some maximum t,,,, as P, is scanned
but what happens for T > 7,4, ???
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* where is surface yielding maximal value of €., beyond T,;,4,??

C? diverges at singularity

~
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* applies for any time
and any 4 > 0!
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Complexity = Almost Anything:
“regulate”: Fy = Fy = 1 4+ AL*CpeaC " — My L¥(CpeaC**)?

X

general issue if F,(r —» 0) - 4o

€ true max

 maximum pushed to

edge of phase space

* applies for any time
and any 4 > 0!

)\ > )\crit

(another interesting
story for 4 < —1)



Generalizing CA:

e complexity=action: evaluate gravitational action for Wheeler-DeWitt
patch = domain of dependence of bulk time slice connecting
boundary Cauchy slices in CFT  (Brown, Roberts, Swingle, Susskind & Zhao)
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Generalizing CA:

e complexity=action: evaluate gravitational action for Wheeler-DeWitt
patch = domain of dependence of bulk time slice connecting
boundary Cauchy slices in CFT  (Brown, Roberts, Swingle, Susskind & Zhao)

I
eate) = Bz

~ e NN

Two steps: 1) find a special surfaces bounding codim.-0 region

2) evaluate geometric feature of codim.-0 region
(& boundary surfaces)



Generalizing CA:
1) find a bounding surfaces X, : '1
5{X,X+}(/M Ao /=g Fs(gu) +

/ ddO\/EFZL(gW;Xff_)%—/ dda\/_F5(gW,X”) =
2t

* F, and Fs are scalar functions of bkgd metric g,,,, and embeddings
Xf_: (o) respectively, while Fg is scalar function of bkgd metric g,,,



Generalizing CA:
1) find a bounding surfaces X, : '1
5{X,X+}(/M Ao /=g Fs(gu) +

/ dda\/EF4(gM,,;X§L_)+/ dda\/_F5(gW,X”) =
2t

* F, and Fs are scalar functions of bkgd metric g,,,, and embeddings
Xf_: (o) respectively, while Fg is scalar function of bkgd metric g,,,

2) Evaluate geometric feature of corresponding region:
1
O(Scrr) = gz [ 40 V=0 Filg,) +

Gy L?
dda Vh Fo(g,; XY)
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Generalizing CA:
1) find a bounding surfaces X, : '1
5{X,X+}(/M Ao /=g Fs(gu) +

/ ddO\/EFZL(gW;Xff_)%—/ dda\/_F5(gW,X”) =
2t

* F, and Fs are scalar functions of bkgd metric g,,,, and embeddings
Xf_: (o) respectively, while Fg is scalar function of bkgd metric g,,,

2) Evaluate geometric feature of corresponding region:

1
1
- dda\FFl(gW,X“) b dda\/ﬁFQ(gW;Xﬂ)
Gy L Jx. GyL Js

* yields “nice” diffeomorphism invariant observables, which
exhibit linear growth at late times as well as the switchback effect!!
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Simplest Example: w
tr R
e extremize the functional "'1
O(Scpr) = =+ /dda Vh /A,\
PINE

Gn L
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GN ) vV

Gy L?

* evaluating the volumes of the bounding surfaces X weighted by
coefficients a4, as well as of volume of codim.-0 region M
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* extremize the functional '1
OXcrr) = Yt /dda Vh /A\
PINE

Gy L
& /dda\/_—l— /dd—HO’\/
GN _

Gy L?

* evaluating the volumes of the bounding surfaces X weighted by
coefficients a4, as well as of volume of codim.-0 region M

* extremal equations yields CMC surfaces (eg, see Witten & Kuchar)
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K(E+):_Od+—L KX_)= +05—L



Simplest Example:

e extremize the functional

O(ZCFT) — GO;_L deUﬁ
+

_
dd
GN /a\/_—l—
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N

* evaluating the volumes of the bounding surfaces X weighted by
coefficients a4, as well as of volume of codim.-0 region M

* extremal equations yields CMC surfaces (eg, see Witten & Kuchar)

KXy)=— K(X_) = +L

a4 L a_ L
*in limit a; = 0, these surfaces become the future/past light sheets
—> M becomes WDW patch!



Simplest Example:

e extremize the functional

O(ZCFT) — GO;_L deUﬁ
+

_
dd
GN /a\/_—l—

7T /dd—l—lo_ [
N

* evaluating the volumes of the bounding surfaces X weighted by
coefficients a4, as well as of volume of codim.-0 region M

* extremal equations yields CMC surfaces (eg, see Witten & Kuchar)

KXy)=— K(X_) = +L

a4 L a_ L
*in limit a; = 0, these surfaces become the future/past light sheets

—> M becomes WDW patch!
 evaluate action (including bdy terms) ——> complexity=action

 evaluate volume (same functional) —> complexity = volume2.0
(Couch, Fischler & Nguyen)



Probe the singularity with simple example:

tr, tR
e extremize the functional
O(ZCFT) /ddO'\/_
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dd dd—l—l
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* consider a, <« 1 so that future boundary X approaches singularity



Probe the singularity with simple example:

tL tR
e extremize the functional
- d
) —
O( CFT) GNL_/EilO-\/E
o_
dd dd—l—l
GN /2 J\/_—I—GNL2/ O\ —

* consider a, <« 1 so that future boundary X approaches singularity

e evaluate the functional

1
Gy L?

d%e vh h Fi(gu; X1+ =

_+_

O(Xcrr) =

/ddﬂgr F3(guw) +

1
Gy L

1

— dd’ h F5(g,,; X"



Probe the singularity with simple example:

tL tR
e extremize the functional
- d
) —
O( CFT) GNL_/EilO-\/E
o_
dd dd—l—l
GN /2 a\/_—I—GNL2/ O\ —

* consider a, <« 1 so that future boundary X approaches singularity

e evaluate the functional

0
1
O(X /dd+1cr vV—g E ,) +
1 1
— [ & Fi(g,,: X" dd’ X
GNL 5, O-\/7| 1(.9/1! y )_i_GN ) J\/_ M )

|
different choices



Probe the singularity with simple example:

* consideronly X, withK = -1/, janda;, <1 22

1
dcVh Fi(gu; X))

O(Xcrr) = v /s
.

* late time growth dominated by surface rr = 1, ai/d




Probe the singularity with simple example:

* consideronly X, withK = -1/, janda;, <1 22

1
dcVh Fi(gu; X))

O(Xcrr) = v /s
.

* late time growth dominated by surface rr = 1, ai/d

dCsen N 8 d

Fy =1 ~ M
! dr d—1 at =0
dC S d
Fi, =—-LK 5PN~ M
: dr — d—1
4 ~2 dcgen 4 1
Fr=1L"C ~ 1287 d (d—l)(d—2)M—3—>oo

dr o



Probe the singularity with simple example:

* consideronly X, withK = -1/, janda;, <1 22 tR
1
O(Xcrr) = =—— [ d%Vh Fi(gu; X*)
Gn L Js|
* late time growth dominated by surface rr = 1, ai/d
dC 8 d
=1 2 May —0
' dr d—1 % .
Reminder: M = —ST
P =-LK Wgen  S7d MK d
b dr — d—1
4 ~2 dcgen 4 1
Fr=L"C ~ 1287 d*(d—1)(d —2) M — — o0

dr a?



Probe the singularity with simple example:

* consideronly X, withK = -1/, janda;, <1

1
—— [ d% Vh Fy(qg,,: X*
GNL 2+ O-\/_ 1(gﬂf ’ —|—)

e compare to charged black hole

O(Xcrr) =

 late time growth dominated by surface ry ~ r_ + 4nL*T_ a%

only probe up to
Cauchy horizon



Probe the singularity with simple example:

* consideronly X, withK = -1/, janda;, <1

1
dcVh Fi(gu; X))

+

e compare to charged black hole

 late time growth dominated by surface ry ~ r_ + 4nL*T_ a%

dc only probe up to
Fl — 1 gen ~ 160 S T ap — 0 Cauchy horizon
dT
ACgen
Fy=—-LK S~ 16 ST
dr
dCgen
B =L'C* 8 ~ “mess” S_T_ a4 — 0

dr



Probe the singularity with simple example:

* consideronly X, withK = -1/, janda;, <1

1
O(Zcpr) = d’o Vh Fi(gu; XY)

GNL 2+

e compare to charged black hole

 late time growth dominated by surface ry ~ r_ + 4nL*T_ a%

1C only probe up to
Cauchy hori
F=1 gen 160 S T ay — 0 auchy horizon
dr
dC
F1 — LK . 5% ~ lom S_T_
dr K entropy and temperature
% of inner horizon
L =L*C* 2 ~ “mess” S_T_a, — 0

dr



Comments:

* have found an infinite class of gravitational observables which
exhibit complexity-like behaviour

—> feature of holographic complexity! (not a bug!)

—> families of observables allow for systematic
study of physics beyond the horizon

—> in boundary, different realizations of complexity make
different features of the spacetime geometry manifest

—> key challenge: find interpretation of gravitational
observables in boundary QFT?

—> may be related to ambiguities in defining complexity?
* reference state? gate set? weighting of gates? . ...



Conclusions/Questions/Outlook:

* simple example but “classical mechanics” analysis readily extends to
F1 (9w, Ruvpo, Vi) and to observables where F; #= F,

 couplings for curvature invariants should not be too large

* similar behaviour appears to hold for functionals including
dependence on extrinsic curvature

* infinite class of holographic observables equally viable candidates
for gravitational dual of complexity!!

e can freedom in constructing gravitational observables be related to
freedom in constructing complexity model in boundary QFT

* is there something that singles out maximal volume?

* what is role of extremal solutions which are not global maxima
and probe very near to singularity?

* add matter contributions to new observables (eg, CA proposal)

* precise interpretation of gravitational observables in boundary QFT



Conclusions/Questions/Outlook:

* simple example but “classical mechanics” analysis readily extends to
F1 (9w Ruvpo, Vi) and to observables where F; # F,

 couplings for curvature invariants should not be too large
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