

ivind Jorstad, RCM & Shan-Ming Ruan [arXiv:2304.05453]

Holographic Entanglement Entropy:

(Ryu & Takayanagi `06)

• CFT dof within **A** described by density matrix $ho_A = Tr_{ar{A}}(|\psi\rangle\langle\psi|)$

→ calculate von Neumann entropy: $S(A) = -Tr \left[\rho_A \log \rho_A\right]$

Holographic Entanglement Entropy:

• holographic EE is a fruitful forum for bulk-boundary dialogue:

new lessons about quantum field theories

new lessons about quantum gravity

Holographic Entanglement Entropy:

holographic EE is a fruitful forum for bulk-boundary dialogue:

Spacetime Geometry = Entanglement

(van Raamsdonk `10)

 "to understand the rich geometric structures that exist behind black hole horizons and which are predicted by general relativity."

• "to understand the rich geometric structures that exist behind black hole horizons and which are predicted by general relativity."

 "to understand the rich geometric structures that exist behind black hole horizons and which are predicted by general relativity."

 "to understand the rich geometric structures that exist behind black hole horizons and which are predicted by general relativity."

• "to understand the rich geometric structures that exist behind black hole horizons and which are predicted by general relativity."

 "to understand the rich geometric structures that exist behind black hole horizons and which are predicted by general relativity."

• computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular quantum state?

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular quantum state?
- quantum circuit model:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular quantum state?
- quantum circuit model:

$$\begin{split} \psi \rangle &= U \left| \psi_0 \right\rangle & \text{unentangled} \\ & \underbrace{ \mathsf{unentangled}}_{\text{simple}^{\Lambda} \text{reference state}} \\ & \mathsf{eg,} \left| 00000 \cdots 0 \right\rangle \end{split}$$

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular quantum state?
- quantum circuit model:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular quantum state?
- quantum circuit model:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular state?
- quantum circuit model:

$$\begin{split} |\psi\rangle &= U \, |\psi_0\rangle \\ & \text{unentangled} \\ & \text{unitary operator} & \underbrace{\quad \text{simple}^{\Lambda} \text{reference state}}_{\substack{\text{built from set of} \\ \text{simple gates}}} \\ \text{tolerance:} & ||\psi\rangle - |\psi\rangle_{\text{Target}} \, |^2 \leq \varepsilon \end{split}$$

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular state?
- quantum circuit model:

$$\begin{split} |\psi\rangle &= U \, |\psi_0\rangle \\ & \text{unentangled} \\ & \text{unitary operator} & \underbrace{\quad \text{simple}}^{\text{reference state}} \\ & \text{built from set of} \\ & \text{simple gates} \\ & \text{tolerance:} \, |\, |\psi\rangle - |\psi\rangle_{\text{Target}} \, |^2 \leq \varepsilon \end{split}$$

 complexity = minimum number of gates required to prepare the desired target state (ie, need to find optimal circuit)

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular state?
- quantum circuit model:

$$\begin{split} |\psi\rangle &= U \, |\psi_0\rangle \\ & \text{unentangled} \\ & \text{unitary operator} & \underbrace{\quad \text{simple}^{\Lambda} \text{reference state}}_{\substack{\text{built from set of} \\ \text{simple gates}}} \\ \text{tolerance:} & ||\psi\rangle - |\psi\rangle_{\text{Target}} \,|^2 \leq \varepsilon \end{split}$$

- complexity = minimum number of gates required to prepare the desired target state (ie, need to find optimal circuit)
- does the answer depend on the choices?? **YES!!**

- <u>complexity=action</u>: evaluate gravitational action for Wheeler-DeWitt patch = domain of dependence of bulk time slice connecting boundary Cauchy slices in CFT (Brown, Roberts, Swingle, Susskind & Zhao)
- both of these gravitational "observables" probe the black hole interior (at arbitrarily late times on boundary)

- <u>complexity=action</u>: evaluate gravitational action for Wheeler-DeWitt patch = domain of dependence of bulk time slice connecting boundary Cauchy slices in CFT (Brown, Roberts, Swingle, Susskind & Zhao)
- both of these gravitational "observables" probe the black hole interior (at arbitrarily late times on boundary)

WHY COMPLEXITY??

• linear growth (at late times)

(d = boundary dimension)

$$\frac{d\mathcal{C}_{\mathrm{V}}}{dt}\Big|_{t\to\infty} = \frac{8\pi}{d-1} M \quad \text{(planar)} \qquad \frac{d\mathcal{C}_{\mathrm{A}}}{dt}\Big|_{t\to\infty} = \frac{2M}{\pi}$$
Susskind, Brown, ...

• "switchback" effect: complexity $\propto \Sigma |t_i - t_{i+1}| - 2nt_*$

probe black holes with shock waves

Stanford, Susskind, ...

But why does Complexity = Volume or Action???

But why does Complexity = Volume or Action???

Ambiguities in defining complexity?

• reference state? gate set? weighting of gates? . . .

 <u>complexity=volume</u>: evaluate proper volume of extremal codim-one surface connecting Cauchy surfaces in boundary theory (cf holo EE) (Stanford & Susskind)

• yields "nice" diffeomorphism invariant observable

1) find a special surface Σ :

$$\delta_X \left(\int_{\Sigma} d^d \sigma \sqrt{h} \ F_2(g_{\mu\nu}; X^{\mu}) \right) = 0 \$$

• F_2 is *scalar* function of bkgd metric $g_{\mu\nu}$ and embedding $X^{\mu}(\sigma)$

1) find a special surface Σ :

$$\delta_X \left(\int_{\Sigma} d^d \sigma \sqrt{h} \ F_2(g_{\mu\nu}; X^{\mu}) \right) = 0$$

• F_2 is *scalar* function of bkgd metric $g_{\mu\nu}$ and embedding $X^{\mu}(\sigma)$

2) evaluate geometric feature of surface:

$$O_{F_1, \Sigma_{F_2}}(\Sigma_{CFT}) = \frac{1}{G_N L} \int_{\Sigma_{F_2}} d^d \sigma \sqrt{h} F_1(g_{\mu\nu}; X^{\mu})$$

• F_1 is scalar function of bkgd metric $g_{\mu\nu}$ and embedding $X^{\mu}(\sigma)$

1) find a special surface Σ :

$$\delta_X \left(\int_{\Sigma} d^d \sigma \sqrt{h} \ F_2(g_{\mu\nu}; X^{\mu}) \right) = 0$$

 $+t_{R}$

2) evaluate geometric feature of surface:

$$O_{F_1,\Sigma_{F_2}}(\Sigma_{CFT}) = \frac{1}{G_N L} \int_{\Sigma_{F_2}} d^d \sigma \sqrt{h} F_1(g_{\mu\nu}; X^{\mu})$$

- F_1 is scalar function of bkgd metric $g_{\mu\nu}$ and embedding $X^{\mu}(\sigma)$
- yields "nice" diffeomorphism invariant observables

1) find a special surface Σ :

$$\delta_X \left(\int_{\Sigma} d^d \sigma \sqrt{h} \ F_2(g_{\mu\nu}; X^{\mu}) \right) = 0$$

• F_2 is scalar function of bkgd metric $g_{\mu\nu}$ and embedding $X^{\mu}(\sigma)$

2) evaluate geometric feature of surface:

$$O_{F_1, \Sigma_{F_2}}(\Sigma_{CFT}) = \frac{1}{G_N L} \int_{\Sigma_{F_2}} d^d \sigma \sqrt{h} \ F_1(g_{\mu\nu}; X^{\mu})$$

- F_1 is scalar function of bkgd metric $g_{\mu\nu}$ and embedding $X^{\mu}(\sigma)$
- yields "nice" diffeomorphism invariant observables

So what?

So what?

1) Observables grow linearly with time at late times:

$$\lim_{\tau \to \infty} O_{F_1, \Sigma_{F_2}}(\tau) \sim P_{\infty} \tau$$

where in large T limit, the constant $P_{\infty} \propto \text{mass}$

2) Observables exhibit "switchback effect", ie, universal time delay in response to shock waves falling into the dual black hole

So what?

1) Observables grow linearly with time at late times:

$$\lim_{\tau \to \infty} O_{F_1, \Sigma_{F_2}}(\tau) \sim P_{\infty} \tau$$

where in large *T* limit, the constant $P_{\infty} \propto \text{mass}$

2) Observables exhibit "switchback effect", ie, universal time delay in response to shock waves falling into the dual black hole

 universality displayed by observables suggests that all of them are equally viable candidates for holographic complexity!! Simple Example: $F_1 = F_2 = 1 + \lambda L^4 C_{abcd} C^{abcd}$ • generalized "volume": $C_{gen} = \frac{V_x}{G_N L} \int_{\Sigma} d\sigma \left(\frac{r}{L}\right)^{d-1} \sqrt{-f(r)\dot{v}^2 + 2\dot{v}\dot{r}} a(r)$

where
$$f(r) = \frac{r^2}{L^2} \left(1 - \frac{r_h^d}{r^d}\right)$$
 and $a(r) = 1 + \tilde{\lambda} \left(\frac{r_h}{r}\right)^{2d}$
planar AdS black hole $\tilde{\lambda} = d(d-1)^2(d-2)\lambda$

• "gauge fix" worldvolume coordinate:
$$\sqrt{-f(r)\dot{v}^2 + 2\dot{v}\dot{r}} = a(r)\left(\frac{r}{L}\right)^{d-1}$$

• conserved "momentum": $P_v = \dot{r} - f(r) \dot{v} \longrightarrow \frac{d\mathcal{C}_{\text{gen}}}{d\tau} = \frac{1}{2} P_v$

• profile determined by classical mechanics problem

$$\dot{r}^2 + \widetilde{U}(r) = P_v^2$$
 with $\widetilde{U}(r) = -f(r)a^2(r)\left(\frac{r}{L}\right)^{2(d-1)}$,

Simple Example: $F_1 = F_2 = 1 + \lambda L^4 C_{abcd} C^{abcd}$ • generalized "volume": $C_{gen} = \frac{V_x}{G_N L} \int_{\Sigma} d\sigma \left(\frac{r}{L}\right)^{d-1} \sqrt{-f(r)\dot{v}^2 + 2\dot{v}\dot{r}} \underline{a(r)}$ where $f(r) = \frac{r^2}{L^2} \left(1 - \frac{r_h^d}{r^d}\right)$ and $a(r) = 1 + \tilde{\lambda} \left(\frac{r_h}{r}\right)^{2d}$

planar AdS black hole \checkmark $\hat{\lambda} = d(d-1)^2(d-2)\,\lambda$

- "gauge fix" worldvolume coordinate: $\sqrt{-f(r)\dot{v}^2 + 2\dot{v}\dot{r}} = a(r)\left(\frac{r}{L}\right)^{d-1}$
- conserved "momentum": $P_v = \dot{r} f(r) \dot{v} \longrightarrow \frac{d\mathcal{C}_{\text{gen}}}{d\tau} = \frac{1}{2} P_v$
- profile determined by classical mechanics problem

$$\dot{r}^2 + \widetilde{U}(r) = P_v^2$$
 with $\widetilde{U}(r) = -f(r)a^2(r)\left(\frac{r}{L}\right)^{2(d-1)}$,

Simple Example: $F_1 = F_2 = 1 + \lambda L^4 C_{abcd} C^{abcd}$

profile determined by classical mechanics problem

Simple Example: $F_1 = F_2 = 1 + \lambda L^4 C_{abcd} C^{abcd}$

• profile determined by classical mechanics problem

Simple Example: $F_1 = F_2 = 1 + \lambda L^4 C_{abcd} C^{abcd}$

• profile determined by classical mechanics problem

- recall simple example: $F_1 = F_2 = 1 + \lambda L^4 C_{abcd} C^{abcd}$
- coupling cannot be "too large", ie, $\tilde{\lambda} = d(d-1)^2(d-2)\lambda$

• coupling for curvature invariants should not be too large

• coupling for curvature invariants should not be too large

• where is surface yielding maximal value of C_{gen} beyond τ_{max} ??

• where is surface yielding maximal value of C_{gen} beyond τ_{max} ??

• where is surface yielding maximal value of C_{gen} beyond τ_{max} ??

"regulate": $F_1 = F_2 = 1 + \lambda L^4 C_{abcd} C^{abcd} - \lambda_4 L^8 (C_{abcd} C^{abcd})^2$

"regulate": $F_1 = F_2 = 1 + \lambda L^4 C_{abcd} C^{abcd} - \lambda_4 L^8 (C_{abcd} C^{abcd})^2$

"regulate": $F_1 = F_2 = 1 + \lambda L^4 C_{abcd} C^{abcd} - \lambda_4 L^8 (C_{abcd} C^{abcd})^2$

general issue if $F_2(r \rightarrow 0) \rightarrow +\infty$

"regulate": $F_1 = F_2 = 1 + \lambda L^4 C_{abcd} C^{abcd} - \lambda_4 L^8 (C_{abcd} C^{abcd})^2$

general issue if $F_2(r \rightarrow 0) \rightarrow +\infty$

(another interesting story for $\lambda < -1$)

 <u>complexity=action</u>: evaluate gravitational action for Wheeler-DeWitt patch = domain of dependence of bulk time slice connecting boundary Cauchy slices in CFT (Brown, Roberts, Swingle, Susskind & Zhao)

 <u>complexity=action</u>: evaluate gravitational action for Wheeler-DeWitt patch = domain of dependence of bulk time slice connecting boundary Cauchy slices in CFT (Brown, Roberts, Swingle, Susskind & Zhao)

<u>Two steps</u>: 1) find a special surfaces bounding codim.-0 region

2) evaluate geometric feature of codim.-0 region(& boundary surfaces)

1) find a bounding surfaces $\,\Sigma_{\pm}:\,$

$$\delta_{\{X_{-},X_{+}\}} \left(\int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g} \ F_{6}(g_{\mu\nu}) + \int_{\Sigma_{+}} d^{d} \sigma \sqrt{h} \ F_{4}(g_{\mu\nu};X_{+}^{\mu}) + \int_{\Sigma_{-}} d^{d} \sigma \sqrt{h} \ F_{5}(g_{\mu\nu};X_{-}^{\mu}) \right) = 0$$

 t_L

• F_4 and F_5 are scalar functions of bkgd metric $g_{\mu\nu}$ and embeddings $X^{\mu}_{\pm}(\sigma)$ respectively, while F_6 is scalar function of bkgd metric $g_{\mu\nu}$

1) find a bounding surfaces Σ_{\pm} :

$$\delta_{\{X_{-},X_{+}\}} \left(\int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g} \ F_{6}(g_{\mu\nu}) + \int_{\Sigma_{+}} d^{d} \sigma \sqrt{h} \ F_{4}(g_{\mu\nu};X_{+}^{\mu}) + \int_{\Sigma_{-}} d^{d} \sigma \sqrt{h} \ F_{5}(g_{\mu\nu};X_{-}^{\mu}) \right) = 0$$

 t_L

F₄ and F₅ are scalar functions of bkgd metric g_{μν} and embeddings X^μ_± (σ) respectively, while F₆ is scalar function of bkgd metric g_{μν}
 2) Evaluate geometric feature of corresponding region:

$$O(\Sigma_{CFT}) = \frac{1}{G_N L^2} \int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g} F_3(g_{\mu\nu}) + \frac{1}{G_N L} \int_{\Sigma_+} d^d \sigma \sqrt{h} F_1(g_{\mu\nu}; X^{\mu}_+) + \frac{1}{G_N L} \int_{\Sigma_-} d^d \sigma \sqrt{h} F_2(g_{\mu\nu}; X^{\mu}_-)$$

1) find a bounding surfaces Σ_{\pm} :

$$\delta_{\{X_{-},X_{+}\}} \left(\int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g} \ F_{6}(g_{\mu\nu}) + \int_{\Sigma_{+}} d^{d} \sigma \sqrt{h} \ F_{4}(g_{\mu\nu};X_{+}^{\mu}) + \int_{\Sigma_{-}} d^{d} \sigma \sqrt{h} \ F_{5}(g_{\mu\nu};X_{-}^{\mu}) \right) = 0$$

F₄ and F₅ are scalar functions of bkgd metric g_{μν} and embeddings X^μ_± (σ) respectively, while F₆ is scalar function of bkgd metric g_{μν}
 2) Evaluate geometric feature of corresponding region:

$$O(\Sigma_{CFT}) = \frac{1}{G_N L^2} \int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g} F_3(g_{\mu\nu}) + \frac{1}{G_N L} \int_{\Sigma_+} d^d \sigma \sqrt{h} F_1(g_{\mu\nu}; X^{\mu}_+) + \frac{1}{G_N L} \int_{\Sigma_-} d^d \sigma \sqrt{h} F_2(g_{\mu\nu}; X^{\mu}_-)$$

 yields "nice" diffeomorphism invariant observables, which exhibit linear growth at late times as well as the switchback effect!!

• extremize the functional

$$O(\Sigma_{CFT}) = \frac{\alpha_+}{G_N L} \int_{\Sigma_+} d^d \sigma \sqrt{h} + \frac{\alpha_-}{G_N L} \int_{\Sigma_-} d^d \sigma \sqrt{h} + \frac{1}{G_N L^2} \int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g}$$

 t_R

 t_L

• evaluating the volumes of the bounding surfaces Σ_{\pm} weighted by coefficients α_{\pm} , as well as of volume of codim.-0 region \mathcal{M}

• extremize the functional

$$O(\Sigma_{CFT}) = \frac{\alpha_+}{G_N L} \int_{\Sigma_+} d^d \sigma \sqrt{h} + \frac{\alpha_-}{G_N L} \int_{\Sigma_-} d^d \sigma \sqrt{h} + \frac{1}{G_N L^2} \int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g}$$

 t_L

 t_R

- evaluating the volumes of the bounding surfaces Σ_{\pm} weighted by coefficients α_{\pm} , as well as of volume of codim.-0 region \mathcal{M}
- extremal equations yields CMC surfaces (eg, see Witten & Kuchar)

$$K(\Sigma_{+}) = -\frac{1}{\alpha_{+}L} \qquad K(\Sigma_{-}) = +\frac{1}{\alpha_{-}L}$$

• extremize the functional

$$O(\Sigma_{CFT}) = \frac{\alpha_+}{G_N L} \int_{\Sigma_+} d^d \sigma \sqrt{h}$$

+ $\frac{\alpha_-}{G_N L} \int_{\Sigma_-} d^d \sigma \sqrt{h} + \frac{1}{G_N L^2} \int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g}$

 t_R

 \mathcal{M}

- evaluating the volumes of the bounding surfaces Σ_{\pm} weighted by coefficients α_{\pm} , as well as of volume of codim.-0 region \mathcal{M}
- extremal equations yields CMC surfaces (eg, see Witten & Kuchar)

$$K(\Sigma_{+}) = -\frac{1}{\alpha_{+}L} \qquad K(\Sigma_{-}) = +\frac{1}{\alpha_{-}L}$$

• in limit $\alpha_{\pm} \rightarrow 0$, these surfaces become the future/past light sheets $\longrightarrow \mathcal{M}$ becomes WDW patch!

• extremize the functional

$$O(\Sigma_{CFT}) = \frac{\alpha_+}{G_N L} \int_{\Sigma_+} d^d \sigma \sqrt{h}$$

+ $\frac{\alpha_-}{G_N L} \int_{\Sigma_-} d^d \sigma \sqrt{h} + \frac{1}{G_N L^2} \int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g}$

 t_R

 \mathcal{M}

- evaluating the volumes of the bounding surfaces Σ_{\pm} weighted by coefficients α_{\pm} , as well as of volume of codim.-0 region \mathcal{M}
- extremal equations yields CMC surfaces (eg, see Witten & Kuchar) $K(\Sigma_{+}) = -\frac{1}{\alpha_{+} L} \qquad K(\Sigma_{-}) = +\frac{1}{\alpha_{-} L}$
- in limit $\alpha_{\pm} \rightarrow 0$, these surfaces become the future/past light sheets $\longrightarrow \mathcal{M}$ becomes WDW patch!
- evaluate action (including bdy terms) ----> complexity=action
- evaluate volume (same functional) ----> complexity = volume2.0 (Couch, Fischler & Nguyen)

• extremize the functional

$$O(\Sigma_{CFT}) = \frac{\alpha_+}{G_N L} \int_{\Sigma_+} d^d \sigma \sqrt{h} + \frac{\alpha_-}{G_N L} \int_{\Sigma_-} d^d \sigma \sqrt{h} + \frac{1}{G_N L^2} \int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g}$$

 Σ_+

 t_L

 t_R

• consider $lpha_+ \ll 1$ so that future boundary Σ_+ approaches singularity

• extremize the functional

$$O(\Sigma_{CFT}) = \frac{\alpha_+}{G_N L} \int_{\Sigma_+} d^d \sigma \sqrt{h} + \frac{\alpha_-}{G_N L} \int_{\Sigma_-} d^d \sigma \sqrt{h} + \frac{1}{G_N L^2} \int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g}$$

 Σ_+

 t_L

 t_R

- consider $\alpha_+ \ll 1$ so that future boundary Σ_+ approaches singularity
- evaluate the functional

$$O(\Sigma_{CFT}) = \frac{1}{G_N L^2} \int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g} F_3(g_{\mu\nu}) + \frac{1}{G_N L} \int_{\Sigma_+} d^d \sigma \sqrt{h} F_1(g_{\mu\nu}; X^{\mu}_+) + \frac{1}{G_N L} \int_{\Sigma_-} d^d \sigma \sqrt{h} F_2(g_{\mu\nu}; X^{\mu}_-)$$

• extremize the functional

$$O(\Sigma_{CFT}) = \frac{\alpha_+}{G_N L} \int_{\Sigma_+} d^d \sigma \sqrt{h} + \frac{\alpha_-}{G_N L} \int_{\Sigma_-} d^d \sigma \sqrt{h} + \frac{1}{G_N L^2} \int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g}$$

 Σ_+

 t_L

 t_R

- consider $lpha_+ \ll 1$ so that future boundary Σ_+ approaches singularity
- evaluate the functional

$$O(\Sigma_{CFT}) = \frac{1}{G_N L^2} \int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g} F_{\mathcal{S}}(g_{\mu\nu}) + \frac{1}{G_N L} \int_{\Sigma_+} d^d \sigma \sqrt{h} F_1(g_{\mu\nu}; X^{\mu}_+) + \frac{1}{G_N L} \int_{\Sigma_-} d^d \sigma \sqrt{h} F_2(g_{\mu\nu}; X^{\mu}_-)$$

different choices

• consider only Σ_+ with $K = -\frac{1}{\alpha_+ L}$ and $\alpha_+ \ll 1$ t_L

$$O(\Sigma_{CFT}) = \frac{1}{G_N L} \int_{\Sigma_+} d^d \sigma \sqrt{h} F_1(g_{\mu\nu}; X^{\mu}_+)$$

• late time growth dominated by surface $r_f \simeq r_h \alpha_+^{2/d}$

• consider only Σ_+ with $K = -\frac{1}{\alpha_+ L}$ and $\alpha_+ \ll 1$ t_L

$$O(\Sigma_{CFT}) = \frac{1}{G_N L} \int_{\Sigma_+} d^d \sigma \sqrt{h} F_1(g_{\mu\nu}; X^{\mu}_+)$$

• late time growth dominated by surface $r_f \simeq r_h \alpha_+^{2/d}$

$$F_1 = 1$$
 : $\frac{d\mathcal{C}_{\text{gen}}}{d\tau} \simeq \frac{8\pi d}{d-1} M \alpha_+ \to 0$

$$F_1 = -LK$$
 : $\frac{d\mathcal{C}_{\text{gen}}}{d\tau} \simeq \frac{8\pi d}{d-1}M$

$$F_1 = L^4 C^2$$
 : $\frac{d\mathcal{C}_{\text{gen}}}{d\tau} \simeq 128\pi d^4 (d-1)(d-2) M \frac{1}{\alpha_+^3} \to \infty$

• consider only Σ_+ with $K = -\frac{1}{\alpha_+ L}$ and $\alpha_+ \ll 1 - \frac{t_L}{2}$

$$O(\Sigma_{CFT}) = \frac{1}{G_N L} \int_{\Sigma_+} d^d \sigma \sqrt{h} F_1(g_{\mu\nu}; X^{\mu}_+)$$

• late time growth dominated by surface $r_f \simeq r_h \alpha_+^{2/d}$

$$F_{1} = 1 \quad : \quad \frac{d\mathcal{C}_{\text{gen}}}{d\tau} \simeq \frac{8\pi d}{d-1} M \alpha_{+} \to 0$$

$$F_{1} = -L K \quad : \quad \frac{d\mathcal{C}_{\text{gen}}}{d\tau} \simeq \frac{8\pi d}{d-1} M$$

$$F_{1} = L^{4} C^{2} \quad : \quad \frac{d\mathcal{C}_{\text{gen}}}{d\tau} \simeq 128\pi d^{4} (d-1)(d-2) M \frac{1}{\alpha_{+}^{3}} \to \infty$$

• consider only Σ_+ with $K = -\frac{1}{\alpha_+ L}$ and $\alpha_+ \ll 1$

$$O(\Sigma_{CFT}) = \frac{1}{G_N L} \int_{\Sigma_+} d^d \sigma \sqrt{h} F_1(g_{\mu\nu}; X^{\mu}_+)$$

- compare to charged black hole
- late time growth dominated by surface $r_f \simeq r_- + 4\pi L^2 T_- \alpha_+^2$

only probe up to

Cauchy horizon

• consider only Σ_+ with $K = -\frac{1}{\alpha_+ L}$ and $\alpha_+ \ll 1$

$$O(\Sigma_{CFT}) = \frac{1}{G_N L} \int_{\Sigma_+} d^d \sigma \sqrt{h} F_1(g_{\mu\nu}; X^{\mu}_+)$$

- compare to charged black hole
- late time growth dominated by surface $r_f \simeq r_- + 4\pi L^2 T_- \alpha_+^2$

$$F_1 = 1$$
 : $\frac{d\mathcal{C}_{\text{gen}}}{d\tau} \simeq 16\pi S_- T_- \alpha_+ \to 0$ Cauchy horizon

$$F_1 = -LK$$
 : $\frac{d\mathcal{C}_{\text{gen}}}{d\tau} \simeq 16\pi S_-T_-$

$$F_1 = L^4 C^2$$
 : $\frac{d\mathcal{C}_{\text{gen}}}{d\tau} \simeq \text{``mess''} S_- T_- \alpha_+ \to 0$

• consider only Σ_+ with $K = -\frac{1}{\alpha_+ L}$ and $\alpha_+ \ll 1$

$$O(\Sigma_{CFT}) = \frac{1}{G_N L} \int_{\Sigma_+} d^d \sigma \sqrt{h} F_1(g_{\mu\nu}; X^{\mu}_+)$$

- compare to charged black hole
- late time growth dominated by surface $r_f \simeq r_- + 4\pi L^2 T_- \alpha_+^2$

$$F_1 = 1 \quad : \quad \frac{d\mathcal{C}_{\text{gen}}}{d\tau} \simeq 16\pi \, S_- T_- \, \alpha_+ \to 0 \qquad \text{Cauchy horizon}$$

$$\begin{split} F_1 &= -L K \quad : \quad \frac{d\mathcal{C}_{\text{gen}}}{d\tau} \simeq 16\pi \, S_{-}T_{-} & \text{entropy and temperature} \\ F_1 &= L^4 \, C^2 \quad : \quad \frac{d\mathcal{C}_{\text{gen}}}{d\tau} \simeq \text{``mess''} \, S_{-}T_{-} \, \alpha_{+} \to 0 \end{split}$$

Comments:

 have found an infinite class of gravitational observables which exhibit complexity-like behaviour

feature of holographic complexity! (not a bug!)

- families of observables allow for systematic study of physics beyond the horizon
 - in boundary, different realizations of complexity make different features of the spacetime geometry manifest
 - key challenge: find interpretation of gravitational observables in boundary QFT?

may be related to ambiguities in defining complexity?reference state? gate set? weighting of gates?

Conclusions/Questions/Outlook:

- simple example but "classical mechanics" analysis readily extends to $F_1(g_{\mu\nu}, \mathcal{R}_{\mu\nu\rho\sigma}, \nabla_{\mu})$ and to observables where $F_1 \neq F_2$
- couplings for curvature invariants should not be too large
- similar behaviour appears to hold for functionals including dependence on extrinsic curvature
- infinite class of holographic observables equally viable candidates for gravitational dual of complexity!!
- can freedom in constructing gravitational observables be related to freedom in constructing complexity model in boundary QFT
- is there something that singles out maximal volume?
- what is role of extremal solutions which are not global maxima and probe very near to singularity?
- add matter contributions to new observables (eg, CA proposal)
- precise interpretation of gravitational observables in boundary QFT

Conclusions/Questions/Outlook:

- simple example but "classical mechanics" analysis readily extends to $F_1(g_{\mu\nu}, \mathcal{R}_{\mu\nu\rho\sigma}, \nabla_{\mu})$ and to observables where $F_1 \neq F_2$
- couplings for curvature invariants should not be too large
- similar behaviour appears to hold for functionals including dependence on extrinsic curvature
- infinite class of holographic observables equally viable candidates for gravitational dual of complexity!!
- can freedom i freedom i
 is there so
 what is role or extremal solutions which are not global maxima and probe very near to singularity?
- add matter contributions to new observables (eg, CA proposal)
- precise interpretation of gravitational observables in boundary QFT