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Motivation

The amplituhedron [N. Arkani-Hamed and J. Trnka, 2013]
provides the all-loop integrand for the planar AV = 4 sYM theory.

@ Despite being UV finite it can still have IR divergneces.

@ Requires regularization = dimensional regularization.

@ Computing amplitudes can be challenging in the dimensional
regularization.

@ Dimensional regularization breaks the geometric picture.

@ Can we regulate the IR divergences directly at the amplituhedron
level?


https://link.springer.com/article/10.1007/JHEP10(2014)030

-]
Amplituhedron

The four-point Amplituhedron consists of four external momentum
twistors 2y, Z», Z3, Z4 and L lines {(AB),}, satisfying

((AB)i12)>0, ((AB);23)>0,
((AB);34)>0, ((AB)i14)>0,

Sign flip condition
((AB);13) < 0, ((AB);24) < 0.
Additional positivity conditions:
((AB);(AB);) > 0
where

<1 234) = det(Z1 222324)
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From geometry to the integrand

A differential form (canonical form) with logarithmic singularities on
the boundary of the positive geometry.

one-simplex: [a, b] : b

Logarithmic singularities on the boundaries: a: ;2 , b: ;%
Canonical form:

ax ax a-»b
et =3 =3 " x—b" (x—a)(x—b)dx

=dlog(x — a) — dlog(x — b) = dlog (1 — Z)

Residues on the boundaries:
resX:a(Q[a7b]) =1, reSX:b(Q[&b]) = -1
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Four point one-loop amplituhedron

Let us introduce the notation:

Xi =212, Xo =223, X3 = 2324 , X = 2124, Y = ZpZB .

2
Xo

Z

massless on-shell kinematics:

X3

X4

X

23

Zy

)(? = ()(b )C) = 0 7()0)(i+1) = 0

Number of boundaries: (4,10, 12,6)
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Deformation

The deformed Amplituhedron shifts external kinematics with two
deformation parameters x, y,

X3
K= Xy + xXs., 22 Z3
)A(g =Xo+ yXq, 5(2 5(4
Xz =Xz +xXq,
Xo=Xs+yXo. “ . “
X

Adjacent conditions still hold: (XiXii1) =0
Massive propagators: X,? 0

Thanks to the deformation parameters all collinear configurations
are removed as boundaries!
Number of boundaries: (4,6, 4,2)



Two-loop deformed amplitude
We consider the amplitude, normalized by its tree-level contribution,
M=1-g?MD 1 g*M® + O(g®),

with g2 = g2, ,N;/(1672)

MO~ M@~

+




One-Loop contribution

M=1—-g?M" + g*MB® + O(g®)

Deformed one-loop integral:

(1):/ (1-x3)(1-y%

Y (X1 Y)(XY)(X3Y)(XaY)

Can be easily evaluated using Feynman parameters:
MD(x,y) =

* gta (1-x*) (1 - y?) _
0 GL(1) [(Oé1X + 043)(051 + a3X) + (Oégy + 044)(042 + a4y)]2 n

2log(x) log(y)

Can also be established with the differential equations method!



Two-loop amplitude

M=1—-g?M" 1+ g*M®) + O(g®),

M® = —Q(x?) — Q(y?) + Q(xy?) + J3 (x*) log (y?) + J5 (y?) log (x?) ,
with
Q(z) = 3Li4(2) — 3log(2)Lis(2) + g log?(2)Liz(2) + % log®(2) log(1 — 2)+

3 w% 3 4 2 . 27
10 + T log” (2) + 16 log™ (z) + log® (z) Lig(1 — z) + 47°Liz (—\/E) —

log (z) Lig (1 - l) —log(z)Liz(1 — 2) ,
and

J3(2) = % log® (2) + log () Lip (1 — z) — 2Liz (1 — z) — 2Lis <1 - l) .

Only classical polylogarithms no Lis » or (Liz)?.
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Symbol alphabet

'A::{X71 _'X71 +Wxay71 _'y71 +’y7x'—'y7x'+'y71 _’Xy71 +’Xy}

3]

— z=0
y=0
1-2z=0

— 1+2=0

— 1-y=0
— 1+y=0

L — 1-zy=0
1+2y=0
— z-y=0

— z+y=0
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High-energy limit

This corresponds to x, y — 0, or equivalently, s, t — oo, keeping
x/y = t/s fixed.

1
lim log M = —Ercusp(g) log X log ¥ + T collinear (9) (log X + log y) + C(9)

X,y—0

rcusp = 492 - 8C294 + O(ge)
rcollinear(g) = _4C394 + O(QG) and C(g) = —3/107’[’4g4 + O(gs)

Analogous to formulas in
dimensional regularization [Z. Bern, |. Dixon and V. Smirnov, 2005] and
on the Coulomb branch [L. Alday et al., 2010]


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.72.085001
https://link.springer.com/article/10.1007/JHEP01(2010)077

Summary

@ We generalized the four-particle Amplituhedron geometry of
planar sYM such that the amplitude M(x, y) is infrared finite and
depends on two dual conformal parameters x, y.

@ We obtained analytic result for the two-loop deformed amplitude.

@ In different kinematic limits we obtained behaviour similar to that
on the Coulomb branch.

@ We expect that this new setup will lead to substantial progress in

making the connection between geometry and integrated
functions.



Extra slides
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Embedding formalism

@ Embedding in the projective space C* — CP®:
Xt — X2 = (x# X7, XT), with X@ ~ aX?@ (a # 0).

@ Scalar product

(XY)=2x,y" + XY + X YT

@ The integration measure is defined such that

/ 11
y (YQ* T4 [3(QQPp



I
Differential equations in four-dimensions
[S. Caron-Huot and J. Henn, 2014]
@ Working with finite integrals in D = 4 simplifies the differential

equations.

@ We work in the embedding formalism where a dual conformal
symmetry is apparent.

@ Derivatives of dual conformal integrals with respect to kinematic
variables are dual conformal. This is also true for the
integration-by-parts identities (IBP), Thus, we can work only with a
subset of integrals.

@ In D = 4 different loop orders can be connected using the
four-dimensional Laplace-type equation.

@ Differential equation matrix in a triangular form. Basis functions of
uniform transcendental weight.


https://link.springer.com/article/10.1007/JHEP06(2014)114

One-loop differential equations

@ We consider the integrals belonging to the family

1

G :—/ < = = < with ai=4
ay,a»,a3,84 y (X1 y)a1 (X2 y)ag(XS Y)aS(X4 Y)a4 ; i

@ We use the following derivatives:

1

= 00 1 x)

(XO11 — O3 — O3 1 + xO3 3)

where O;; = (X;0x;). An analogous definition holds for 9.
@ We solve the differential equations iteratively

9.G ~ 2xGy1,11 —2Go1 .21
xGi11,1 = e
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One-loop differential equations

@ System of the differential equations:

g1 =4xy G220, 0
9 = —2x(1-y?) Go121, di—d log (y)
g =—2(1-x2)yGiz10, 9= % log (x)
ge=(1-x3)(1-y*) G111 0

@ Integrated out result:

g1=2,
g2 = 2log(y),
g3 = 2log(x),

94 = 2log(x)log(y)-
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Two-loop differential equations
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I
IBP vectors

@ The generation of an IBP relation is based on the fundamental

identity
_ 9 1 2 a
0_/Yaya5 <2Y > QA(Y),

@ To generate IBP relations, we will be considering the IBP vectors
of the form

Q1 = (V1X)XP = (V1 X)X? . Qfp = (Y2X)) X7 — (Y2X) X7,

for (i,)) € {1,2,3,4}.
@ In general we require orthogonality between Yy for k = 1,2 and
IBP vectors Qj, i.e., (Y, Qj) = 0.

@ In the two-loop case we can consider additional vectors
Qi = (V1 X)YE — (Y1Yo) X, QFy = (Y2 X)) Y7 — (Yo Y1) XP.



Double box

Two-loop contribution
M®(x,y) = 1"°(x, y) + 1"°(y, x),
Integral representation

(1 - X221~ y*)

db _
Fxy) = /Y1 /Yz (X1 Y1) (X2 Y1)(Xa Y1)( Y1 Y2) (X1 Y2) (X5 Y2) (X4 Y2)

Two-loop box

) = -0+ 30 (%) + 3005 + ) ogl)



Deformation in two dimensions

Amplituhedron: Deformation:
z>0,w>0 nz+w>0,iw+2z>0
dwdz dwdz(1 — nfj)
w = w =

wz (nz + w)(fiw + z)
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Kinematics
X
2>
X X
Z
X

Dual conformal cross ratios:

g KiX)?

xexe 4

. (eX)? 1

xzxz 4
e

ma
P2 Ps

mo my

P+ P4
my

2 _ 2 m2

pi = my + My

(= + mi + m5)?
4mim?

)

(=t + m3 + mj)?
4msmz
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Regge limit

This corresponds to y — 0, keeping x fixed (t — ).
We find that the leading terms in the Regge limit are given by

lim M(x = €°.y) = r(o,60; g) y =9 1 0(y°),
y—

where

4
Meusp(9,0;9) = g2§(—2 log x) + 94{53 log x (7r2 + Iog2 X) +

€% | 4Lis (x?) — 4Lip (x?) log(x) — % log3(x) — %wz log(x) — 4(3] }

and

¢ = cosf) —cos¢ 1 + x%2 — 2x cosf
N ising 1— x2

provided that we set £ = 1
e 23012



