(Higher-)spinning at the Edge of the Swampland

Florent Baume University of Hamburg

Based on 2011.03583 and 2305.05693 w/ J. Calderón Infante (CERN)

DESY workshop, 2023-09-26

The Swampland

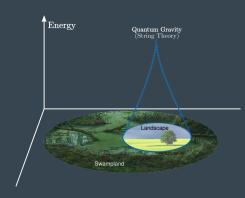
[Vafa '06]

Can all EFTs be completed to Quantum Gravity?

 \longrightarrow NO!

Swampland Programme:

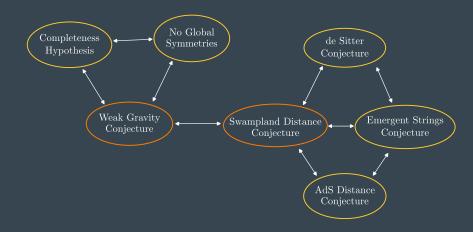
Find constraints EFTs must satisfy



[van Beest, Calderón Infante, Mirfendereski, Valenzuela '21]

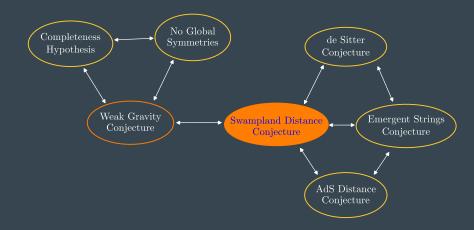
Conjecturology

Motivated by string theory, but also by bottom-up approaches

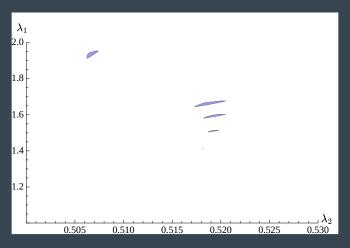


Conjecturology

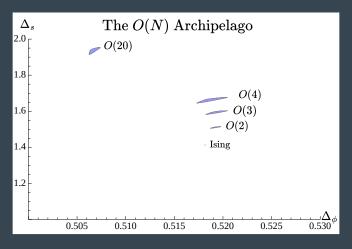
Motivated by string theory, but also by bottom-up approaches



Ultimate Goal: understand the rules of QG



Ultimate Goal: understand the rules of QG



[Kos, Poland, Simmons-Duffin, Vichi'15]

In spirit, similar to the conformal bootstrap!

Holographic Swampland: take the comparison seriously

QG in AdS

holography Conformal Field theory

Holographic Swampland: take the comparison seriously

Holographic Swampland: take the comparison seriously

Reformulate Swampland Conjectures, purely in terms of CFT data

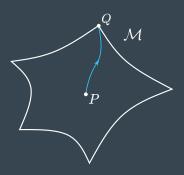
Learn new things about CFTs

Backreact results, discover QG features!

Given a moduli space ${\cal M}$ param by $\left<\phi^i\right>$

- ∃ infinite tower of massless states at infinite-distance points
- 2) As dist $(P,Q) \to \infty$,

$$\frac{M_{\mathrm{tower}}}{M_{\mathrm{Pl}}} \sim e^{-\alpha_G \cdot \mathrm{dist}}$$



 ϕ^i massless

In flat space, well tested. What should it be holographically?

Holographic version of SDC

[FB, Calderón Infante'21]

see also [Perlmutter, Rastelli, Vafa, Valenzuela '21]

Via AdS/CFT

 Φ with $M \longleftrightarrow \mathcal{O}$ with Δ

Holographic version of SDC

[FB, Calderón Infante'21]

see also [Perlmutter, Rastelli, Vafa, Valenzuela '21]

Via AdS/CFT

$$\Phi$$
 with $M \longleftrightarrow \mathcal{O}$ with Δ

$$m_{\phi} = 0 \quad \text{(moduli)} \qquad \longleftrightarrow \qquad \Delta_{\mathcal{O}} = d \quad \text{(marginal operator)} \ (\mathcal{M}_{\mathsf{mod}}, G_{ij}(\phi)) \quad \longleftrightarrow \quad (\mathcal{M}_{\mathsf{CFT}}, \chi_{ij}(t))$$

Holographic version of SDC

[FB, Calderón Infante'21]

see also [Perlmutter, Rastelli, Vafa, Valenzuela '21]

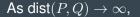
Via AdS/CFT

$$\Phi$$
 with $M \longleftrightarrow \mathcal{O}$ with Δ

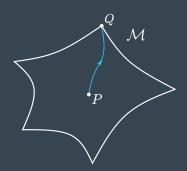
$$m_{\phi} = 0 \quad \text{(moduli)} \qquad \longleftrightarrow \qquad \Delta_{\mathcal{O}} = d \quad \text{(marginal operator)} \ (\mathcal{M}_{\mathsf{mod}}, G_{ij}(\phi)) \quad \longleftrightarrow \quad (\mathcal{M}_{\mathsf{CFT}}, \chi_{ij}(t))$$

The Swampland Distance Conjecture

Given a moduli space ${\cal M}$ param. by $\left<\phi^i\right>$



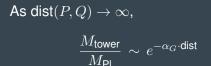
$$\frac{M_{\rm tower}}{M_{\rm Pl}}\,\sim\,e^{-\alpha_G\cdot{\rm dist}}$$

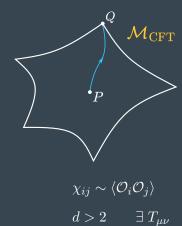


 ϕ^i massless

The **CFT** Distance Conjecture

Given a conformal manifold with marginal coupling t^i





The CFT Distance Conjecture

Given a conformal manifold with marginal coupling t^i

 $\gamma_{
m tower} = \Delta - \Delta_{
m unitarity} \, \sim \, e^{-lpha \cdot {
m dist}}$

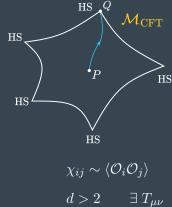
$$> 2$$
 $\exists T_{\mu\nu}$

The CFT Distance Conjecture

Given a conformal manifold with marginal coupling t^i

- 1) HS point $\Rightarrow \infty$ dist.
- 2) ∞ dist. \Rightarrow HS point
- 3) As dist $(P,Q) \to \infty$,

$$\gamma_{\rm tower} = \Delta - \Delta_{\rm unitarity} \, \sim \, e^{-\alpha \cdot {\rm dist}} \label{eq:gamma_tower}$$



$$> 2$$
 $\exists T_{\mu\nu}$

(HS = higher spin)

higher-spin operators in the spectrum:

$$J_{\mu_1...\mu_\ell} \sim ar{\phi} \; \partial_{\mu_1} \ldots \partial_{\mu_\ell} \phi - (\mathsf{traces})$$

NB: $J_{\mu\nu} = T_{\mu\nu}$

higher-spin operators in the spectrum:

$$J_{\mu_1...\mu_\ell} \sim \bar{\phi} \; \partial_{\mu_1} \ldots \partial_{\mu_\ell} \phi - (\mathsf{traces})$$

NB:
$$J_{\mu\nu} = T_{\mu\nu}$$

At unitarity bound, become HS conserved currents:

$$\partial^{\mu_1} J_{\mu_1 \dots \mu_\ell} = 0 \,, \qquad \qquad \text{when} \quad \Delta o \ell + (d-2)$$

higher-spin operators in the spectrum:

$$J_{\mu_1...\mu_\ell} \sim ar{\phi} \; \partial_{\mu_1} \ldots \partial_{\mu_\ell} \phi - (\mathsf{traces})$$

NB: $J_{\mu\nu} = T_{\mu\nu}$

At unitarity bound, become HS conserved currents:

$$\partial^{\mu_1} J_{\mu_1 \dots \mu_\ell} = 0 \,,$$

when
$$\Delta
ightarrow \ell + (d-2)$$

Physically:

HS symmetry

 \Leftrightarrow

(partially-)free theory

d=3: [Maldacena, Zhiboedov '11]

d > 3: [Boulanger, Ponomarev, Skvortsov, Taronna '13] [Alba, Diab '14]

higher-spin operators in the spectrum:

$$J_{\mu_1...\mu_\ell} \sim ar{\phi} \; \partial_{\mu_1} \ldots \partial_{\mu_\ell} \phi - (\mathsf{traces})$$

NB:
$$J_{\mu\nu} = T_{\mu\nu}$$

At unitarity bound, become HS conserved currents:

$$\partial^{\mu_1} J_{\mu_1 \dots \mu_\ell} = 0$$
, when $\Delta \to \ell + (d-2)$

CFT Distance Conjecture:

$$\text{Infinite Distance} \qquad \Leftrightarrow \qquad \mathfrak{so}(d,2) \quad \longrightarrow \mathfrak{hs}(d)$$

Status of the Conjecture

Note: Inspired by Swampland, but stands on its own

Constrains the conformal manifold

Status of the Conjecture

Note: Inspired by Swampland, but stands on its own

Constrains the conformal manifold

SCFTs: essentially * follows from superconformal representations

Status of the Conjecture

Note: Inspired by Swampland, but stands on its own

Constrains the conformal manifold

SCFTs: essentially * follows from superconformal representations

CFTs are nice, so we can prove part of it!

HS point \Rightarrow infinite distance

[FB, Calderón Infante '23]

[FB, Calderón Infante '23]

Conformal Perturbation Theory

$$\frac{d\gamma}{dt} = -C_{JJO}(t)$$

t: Zamolodchikov dist.

[FB, Calderón Infante '23]

Broken HS identity

$$\partial \cdot J_{\ell} = \mathbf{g} K_{\ell-1}$$

$$\frac{d\gamma}{dt} = -C_{JJO}(t)$$

Small-parameter exp:

$$\gamma \sim g^2$$

t: Zamolodchikov dist.

$$C_{JJ\mathcal{O}}(g) = C_{JJ\mathcal{O}}^{\mathsf{HS}} + g C_{JK\mathcal{O}}^{\mathsf{HS}} + g^2 C_{KK\mathcal{O}}^{\mathsf{HS}} + \dots$$

Conformal Perturbation Theory

Broken HS identity $\partial \cdot J_{\ell} = \overline{\mathfrak{g}} K_{\ell-1}$

[FB, Calderón Infante '23]

$$\frac{d\gamma}{dt} = -C_{JJO}(t)$$
 Small-parameter exp:

 $\gamma \sim \underline{q^2}$ $C_{IJO}(g) = C_{IJO}^{HS} + g C_{IKO}^{HS} + g^2 C_{KKO}^{HS} + \dots$ t: Zamolodchikov dist.

At minimum:

 $\gamma \sim C_{IJO}$

Lightning-speed sketch of the proof

$$\frac{d\gamma}{dt} \sim -\gamma \qquad \qquad \gamma \sim e^{-t}$$

$$\gamma = 0 \quad \Rightarrow \quad t = \infty$$

HS points are at infinite Zamolodchikov distance!

Lightning-speed sketch of the proof

$$\frac{d\gamma}{dt} \sim -\gamma \qquad \qquad \gamma \sim e^{-t}$$

$$\gamma = 0 \quad \Rightarrow \quad t = \infty$$

HS points are at infinite Zamolodchikov distance!

note: only assumes $T_{\mu\nu}$ + unitarity

NO SUSY required!

Conclusions

CFT Distance Conjecture

- 1) HS points \Rightarrow ∞ -distance points
- 2) HS points $\leftarrow \infty$ -distance points
- |3) $\gamma \sim e^{-\mathsf{dist}}$

Conclusions

CFT Distance Conjecture

- 1) HS points \Rightarrow ∞ -distance points
- 2) HS points $\leftarrow \infty$ -distance points ?
- 3) $\gamma \sim e^{-\text{dist}}$? $(C_{KK\mathcal{O}} \neq 0)$

Conclusions

CFT Distance Conjecture

- 1) HS points $\Rightarrow \infty$ -distance points
- 2) HS points $\leftarrow \infty$ -distance points ?
- 3) $\gamma \sim e^{-\text{dist}}$? $(C_{KK\mathcal{O}} \neq 0)$

Join us as we leave the Swampland behind to explore greener (conformal) pastures...

Thank you for your attention!