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Motivations : Why thermal CFTs?

60

 Thermal effects in QFT: the effect of the temperature
on QFTs are relevant in labs;

H (kOe)

» Black Holes and AdS/CFT: Thermal CFTs are
fundamental in AdS/CFT since they are duals to a
black hole in AdS;

e CFTs on non-trivial manifolds: Thermal effects on a
QFTs can be studied by compactifying the time
direction.
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Thermal CFTs: the setup

A thermal CFT can be thought as a CFT placed T1 :

on the manifold i Thermal CFT
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But new observable are available:




Thermal CFTs: the setup

A two-point function between scalars at finite temperature Is
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Thermal CFTs: the setup

A two-point function between scalars at finite temperature Is
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From symmetries (e.g. broken Ward identities)




Setting the problem...

Zero Temperature | Finite Temperature
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What can be said about thermal two-point functions and
one-point functions?



The Plan

 Equations from KMS -> Light operators;

* A thermal Tauberian theorem -> heavy operators;

A different prospective: the Kéllén-Lehmann spectral
representation and form factors;




Light operators and KMS

 Equations from KMS -> Light operators;
* A thermal Tauberian theorem -> heavy operators;

A different prospective: the Kallén-Lehmann spectral
representation and form factors;




KMS: a set of equations for OPE coefficients

Consider for simplicity r = 0, i.e. zero spatial coordinates:

Kubo-Martin—-Schwinger condition (KMS):
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Crossing-like equation




KMS: a set of equations for OPE coefficients

Consider for simplicity r = 0, i.e. zero spatial coordinates:

Infinite set of equations...



Partial sum value

KMS set of equations: some examples

4-dimensional free theory (6(2)o(0));  correlator of 2d Ising
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Observation: for small k light operators contributes. The bigger is k the more
operators we have to insert. We can justify this (later).




KMS: prediction for large gapped theories

Observation: for small k light operators contributes.

A :

* Consider large gapped theories with few light operators »
(e.g. 1,2,...) X
e Solve a finite number (1,2,...) of KMS equations in terms 2 Ld’vdm—
of the OPE coefficients and one-point functions. qdfb
X



KMS: prediction for large gapped theories

Observation: for small k light operators contributes.

A :

* Consider large gapped theories with few light operators »
(e.g. 1,2,...) <
- o L
e Solve a finite number (1,2,...) of KMS equations in terms 2 d'vdm—
of the OPE coefficients and one-point functions. qdfb
X
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One light operator:
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KMS: prediction for large gapped theorles

Observation: for small k light operators contributes.

X
* Consider large gapped theories with few light operators A »
(e.g. 1,2,...) X
e Solve a finite number (1,2,...) of KMS equations in terms 2 Ld'vdm'
of the OPE coefficients and one-point functions. qdfb
X
X

One light operator: Two light operators:
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Heavy operators

* Equations from KMS -> Light operators;

|
* A thermal Tauberian theorem -> heavy operators; “}
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A different prospective: the Kallén-Lehmann spectral
representation and form factors;




“Thermal” OPE density: heuristic derivation

Consider r = 0, I.e. zero spatial coordinates: the two-point function is
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Try the following ansatz:  p(A) ~ AA™“
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To justify why the density has to grow as a power-law...



“Thermal” OPE density

Consider r = 0, I.e. zero spatial coordinates: the two-point function is
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“Thermal” OPE density: free theory in 4d/2d Ising

Free theory in 4d which is equivalent (€(7)e(0)); in 2d Ising :
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“Thermal” OPE density: 3d O(N) model at large N

Lagrang/an description : / \

1 ol Hubbard-Stratanovich field
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OPE density: 3d O(N) model at large N

The two-point function for zero spatial coordinates is
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OPE density: the precise derivation

Tauberian theorems:
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OPE density: the precise derivation

Toprove: p(A) > —C Work in progress...

But verified in different cases:
* (Generalized) free theories;
e Two dimensional conformal field theories; (unitarity plays a role...)
* Large N O(N) model in 3d;

 Holographic theories for heavy operators;



A Rigorous Tauberian theorem for thermal QFTs

* Equations from KMS -> Light operators;
* A thermal Tauberian theorem -> heavy operators;

A different prospective: the Kallén-Lehmann spectral
representation and form factors;




Kallen-Lehmann spectral density

Consider r = 0, I.e. zero spatial coordinates: the two-point function is
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Tauberian theorem:
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True in any thermal QFT!!!
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Combing with Broken Ward identities
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Some predictions can be tested analytically:
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Free theory in 4a: Iwo dimensional primaries’ two-point functions:
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Conclusions:

* |nfinite set of equation coming from KMS and one-point functions for light
operators in large gapped theories:
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* Prediction for heavy operators OPE coefficients:
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* Prediction for high energy form factors:
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Work In progress:

1. Prove p(A) > —C; *

2. Test for high energy form factors in
thermal QFT (not conformal);
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Future work:

A. Find solutions and/or methods to solve the infinite
set of equations for one-point functions (unicity of the
problem?) for light operators.

B. Compute thermal two-point function and extract data
about AdS back holes.



KMS: including the spin...

Consider for simplicity r = 0, i.e. zero spatial coordinates, but also let us
now consider also the spin structure of the operators
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