Vacua of gauged N = 2 supergravities arising as special subloci of the complex structure moduli space of String Compactifications

Sören Kotlewski

DESY Theory Workshop "New Perspectives in Conformal Field Theory and Gravity"

27.09.2023

JG U

Motivation

- d = 4, N = 2 Supergravity theories appear as low energy EFTs of Calabi-Yau Threefold compactifications in type II string theory
- The target space of the scalar fields can be identified with the Moduli space of the underlying family of Calabi-Yau Threefolds

Motivation

- d = 4, N = 2 Supergravity theories appear as low energy EFTs of Calabi-Yau Threefold compactifications in type II string theory
- The target space of the scalar fields can be identified with the Moduli space of the underlying family of Calabi-Yau Threefolds
- Conifold Singularities are understood in the context of String theory
 - Appearance of additional states which become massless on the singular sublocus [Strominger, 1995]
 - Geometrical: Topology changing transition to a different Moduli space

[Greene, Morrison, Strominger, 1995]

Motivation

- d = 4, N = 2 Supergravity theories appear as low energy EFTs of Calabi-Yau Threefold compactifications in type II string theory
- The target space of the scalar fields can be identified with the Moduli space of the underlying family of Calabi-Yau Threefolds
- Conifold Singularities are understood in the context of String theory
 - Appearance of additional states which become massless on the singular sublocus [Strominger, 1995]
 - Geometrical: Topology changing transition to a different Moduli space

[Greene, Morrison, Strominger, 1995]

- Locally in N = 2 Gauge Theories: Interpretation as a super-Higgs mechanism between vector- and hypermultiplets [Katz, Morrison, Plesser, 1996] [Klemm, Mayr, 1996]
- Here: Find a global description in terms of N = 2 Supergravity
- > Consider Minkowski Vacua of N = 2 gauged Supergravity

Gauged N = 2 Supergravity

- Spectrum
 - Gravity Multiplet $(g_{\mu\nu}, \psi_{\mu A}, A_{\mu})$
 - n_v Vectormultiplets $(A^i_\mu, \lambda^{iA}, t^i)$
 - n_h Hypermultiplets (ζ_{lpha}, q^u)

[Andrianopoli, Bertolini, Ceresole, D'Auria, Ferrara, Fré, Magri, 1996] [Lauria, van Proeyen, 2020]

Gauged N = 2 Supergravity

- Spectrum
 - Gravity Multiplet $(g_{\mu\nu}, \psi_{\mu A}, A_{\mu})$
 - n_v Vectormultiplets $(A^i_\mu, \lambda^{iA}, t^i)$
 - n_h Hypermultiplets (ζ_{lpha}, q^u)
- $\bullet\,$ The target space of the scalars is locally $\mathcal{M}_V\times\mathcal{M}_H$ with
 - \mathcal{M}_V local special Kähler manifold parametrized by n_v complex scalars t^i
 - \mathcal{M}_H quaternionic Kähler manifold parametrized by $4n_h$ real scalars q^u

[Andrianopoli, Bertolini, Ceresole, D'Auria, Ferrara, Fré, Magri, 1996] [Lauria, van Proeyen, 2020]

Gauged N = 2 Supergravity

- Spectrum
 - Gravity Multiplet $(g_{\mu\nu}, \psi_{\mu A}, A_{\mu})$
 - n_v Vectormultiplets $(A^i_\mu, \lambda^{iA}, t^i)$
 - n_h Hypermultiplets (ζ_{lpha}, q^u)
- $\bullet\,$ The target space of the scalars is locally $\mathcal{M}_V\times\mathcal{M}_H$ with
 - \mathcal{M}_V local special Kähler manifold parametrized by n_v complex scalars t^i
 - \mathcal{M}_H quaternionic Kähler manifold parametrized by $4n_h$ real scalars q^u
- Bosonic part of the Action

$$egin{aligned} S_{sc} &= \int rac{1}{2} R \star 1 + g_{iar{j}} \mathcal{D}t^i \wedge \star \mathcal{D}ar{t}^{ar{j}} + h_{uv} \mathcal{D}q^u \wedge \star \mathcal{D}q^v \ &+ rac{1}{2} Im(\mathcal{N})_{ij} F^i \wedge \star F^j + rac{1}{2} Re(\mathcal{N})_{ij} F^i \wedge F^j - V \end{aligned}$$

• Gauge coupling via covariant derivatives

$$\mathcal{D}t^{i} = \partial t^{i} - \hat{k}^{i}_{\lambda}\hat{\Theta}^{\lambda}_{\Lambda}A^{\Lambda} \qquad \mathcal{D}q^{u} = \partial q^{u} - k^{u}_{\lambda}\Theta^{\lambda}_{\Lambda}A^{\Lambda}$$

and scalar potential $V(t^i, q^u)$

• \hat{k}^i_{λ} and k^u_{λ} are killing vectors on \mathcal{M}_V and \mathcal{M}_H respectively

[Andrianopoli, Bertolini, Ceresole, D'Auria, Ferrara, Fré, Magri, 1996] [Lauria, van Proeyen, 2020]

The Scalar Potential

Scalar Potential

$$V(t^{i}, q^{u}) = -6|S|^{2} + \frac{1}{2}|W|^{2} + |N|^{2}$$

• N = 2 supersymmetric Minkowski Vacuum iff

$$|S|^2 = 0$$
 $|W|^2 = 0$ $|N|^2 = 0$

The Scalar Potential

Scalar Potential

$$V(t^{i}, q^{u}) = -6|S|^{2} + \frac{1}{2}|W|^{2} + |N|^{2}$$

• N = 2 supersymmetric Minkowski Vacuum iff

$$|S|^2 = 0$$
 $|W|^2 = 0$ $|N|^2 = 0$

 \bullet Resulting constraints for gauging isometries of \mathcal{M}_{H}

$$\begin{split} 0 &= X^{\Lambda} \Theta^{\lambda}_{\Lambda} \mathcal{P}^{a}_{\lambda} \\ 0 &= g^{i\bar{j}} (\nabla_{\bar{j}} \bar{X}^{\Lambda}) \Theta^{\lambda}_{\Lambda} \mathcal{P}^{a}_{\lambda} \\ 0 &= \bar{X}^{\Lambda} \Theta^{\lambda}_{\Lambda} k^{u}_{\lambda} \end{split}$$

- X^{Λ} : 2($n_v + 1$)-dimensional period vector of \mathcal{M}_V
- $\mathcal{P}_{\lambda}^{a}$: killing prepotential of the isometries k_{λ}^{u} on \mathcal{M}_{H}
- $\Theta^{\lambda}_{\Lambda}$: embedding tensors representing the gauge charges

Minkowski vacua in N = 2 Supergravity

- $(X^{\Lambda}, \nabla_i X^{\Lambda})$ is full ranked matrix and $g^{i\bar{j}}$ invertible
 - $0 = X^{\Lambda} \Theta^{\lambda}_{\Lambda} \mathcal{P}^{a}_{\lambda}$ • $0 = g^{i\bar{j}} (\nabla_{\bar{i}} \bar{X}^{\Lambda}) \Theta^{\lambda}_{\Lambda} \mathcal{P}^{a}_{\lambda}$

Minkowski vacua in N = 2 Supergravity

- $(X^{\Lambda}, \nabla_i X^{\Lambda})$ is full ranked matrix and $g^{i\bar{j}}$ invertible
 - $\succ \Theta^{\lambda}_{\Lambda} \mathcal{P}^{a}_{\lambda} = 0$ for a = 1, 2, 3
 - > stabilizes 3n scalars on \mathcal{M}_H for $n = rk(\Theta^{\lambda}_{\Lambda}k^u_{\lambda})$

(X^Λ, ∇_iX^Λ) is full ranked matrix and g^{ij̄} invertible
Θ^λ_ΛP^a_λ = 0 for a = 1, 2, 3
stabilizes 3n scalars on M_H for n = rk(Θ^λ_Λk^u_λ)
X̄^ΛΘ^λ_Λk^u_λ = 0

 \succ *n* constraints between \mathcal{M}_V and \mathcal{M}_H

- $(X^{\Lambda}, \nabla_i X^{\Lambda})$ is full ranked matrix and $g^{i\bar{j}}$ invertible
 - $\succ \Theta^{\lambda}_{\Lambda} \mathcal{P}^{a}_{\lambda} = 0 \text{ for } a = 1, 2, 3$
 - > stabilizes 3n scalars on \mathcal{M}_H for $n = rk(\Theta^{\lambda}_{\Lambda}k^u_{\lambda})$
- $\bar{X}^{\Lambda}\Theta^{\lambda}_{\Lambda}k^{u}_{\lambda}=0$
 - > *n* constraints between \mathcal{M}_V and \mathcal{M}_H
 - > Non-trivial vev for k_{λ}^{u} creates holomorphic conditions among the X^{Λ}
 - > Super-Higgs mechanism

- $(X^{\Lambda}, \nabla_i X^{\Lambda})$ is full ranked matrix and $g^{i\bar{j}}$ invertible
 - $\succ \Theta^{\lambda}_{\Lambda} \mathcal{P}^{a}_{\lambda} = 0 \text{ for } a = 1, 2, 3$
 - > stabilizes 3n scalars on \mathcal{M}_H for $n = rk(\Theta^{\lambda}_{\Lambda}k^u_{\lambda})$
- $\bar{X}^{\Lambda}\Theta^{\lambda}_{\Lambda}k^{u}_{\lambda}=0$
 - > *n* constraints between \mathcal{M}_V and \mathcal{M}_H
 - > Non-trivial vev for k_{λ}^{u} creates holomorphic conditions among the X^{Λ}
 - Super-Higgs mechanism
- Massive Modes:
 - 3n (real) hypermultiplet scalars
 - *n* (complex) vectormultiplet scalars
 - n gauge bosons eating n additional (real) hypermultiplet scalars
- These combine to *n* long massive vectormultiplets

• Effective Supergravity description breaks down on conifold singularities

- Topology change as a non-trivial 3-cycle shrinks to a point
- > Mass of a massive hypermultiplet vanishes
- > Needed to be taken into account in the first place

Conifold Singularities

• Effective Supergravity description breaks down on conifold singularities

- Topology change as a non-trivial 3-cycle shrinks to a point
- > Mass of a massive hypermultiplet vanishes
- > Needed to be taken into account in the first place
- $(X^{\Lambda}, \nabla_i X^{\Lambda})$ and $g^{i\bar{j}}$ are degenerated
 - > Need to analyze original vacuum constraints

$$0 = X^{\Lambda} \Theta^{\lambda}_{\Lambda} \mathcal{P}^{a}_{\lambda} \qquad 0 = g^{i\bar{j}} (\nabla_{\bar{j}} \bar{X}^{\Lambda}) \Theta^{\lambda}_{\Lambda} \mathcal{P}^{a}_{\lambda} \qquad 0 = \bar{X}^{\Lambda} \Theta^{\lambda}_{\Lambda} k^{u}_{\lambda}$$

• Effective Supergravity description breaks down on conifold singularities

- Topology change as a non-trivial 3-cycle shrinks to a point
- Mass of a massive hypermultiplet vanishes
- > Needed to be taken into account in the first place
- $(X^{\Lambda}, \nabla_i X^{\Lambda})$ and $g^{i\bar{j}}$ are degenerated
 - > Need to analyze original vacuum constraints

$$0 = X^{\Lambda} \Theta^{\lambda}_{\Lambda} \mathcal{P}^{a}_{\lambda} \qquad 0 = g^{i\bar{j}} (\nabla_{\bar{j}} \bar{X}^{\Lambda}) \Theta^{\lambda}_{\Lambda} \mathcal{P}^{a}_{\lambda} \qquad 0 = \bar{X}^{\Lambda} \Theta^{\lambda}_{\Lambda} k^{u}_{\lambda}$$

- Model:
 - \mathcal{M}_V : Local special Kähler manifold with a conifold transition of codimension 1
 - \mathcal{M}_H : Universal hypermultiplet $(\phi, \sigma, C, \overline{C})$
 - \succ Transition Locus reproduced as Minkowski vacuum by stabilizing C and $ar{C}$

- \mathcal{M}_V corresponds to the complex structure Moduli space of type IIB Calabi-Yau compactifications
 - Local special Kähler structure is realized by the variation of Hodge structure

 $(H^3(X,\mathbb{Z}),H^{p,q}(X,\mathbb{C}))$

- \mathcal{M}_V corresponds to the complex structure Moduli space of type IIB Calabi-Yau compactifications
 - Local special Kähler structure is realized by the variation of Hodge structure

 $(H^3(X,\mathbb{Z}), H^{p,q}(X,\mathbb{C}))$

 $\bullet~\mathcal{M}_{H}$ corresponds to the complexified Kähler moduli space

> Can be modelled by a C-Map construction

- \mathcal{M}_V corresponds to the complex structure Moduli space of type IIB Calabi-Yau compactifications
 - Local special Kähler structure is realized by the variation of Hodge structure

 $(H^3(X,\mathbb{Z}), H^{p,q}(X,\mathbb{C}))$

 $\bullet~\mathcal{M}_{H}$ corresponds to the complexified Kähler moduli space

> Can be modelled by a C-Map construction

• Minkowski vacua of gauged N = 2 supergravity correspond to subspaces on M_V with consistent variation of Hodge substructure

- \mathcal{M}_V corresponds to the complex structure Moduli space of type IIB Calabi-Yau compactifications
 - Local special Kähler structure is realized by the variation of Hodge structure

 $(H^3(X,\mathbb{Z}), H^{p,q}(X,\mathbb{C}))$

 $\bullet~\mathcal{M}_{H}$ corresponds to the complexified Kähler moduli space

Can be modelled by a C-Map construction

- Minkowski vacua of gauged N = 2 supergravity correspond to subspaces on M_V with consistent variation of Hodge substructure
- Spotable by
 - a factorization of the intermediate Jacobian
 - a reduction of the Picard-Fuchs ideal
 - a vanishing locus of a period and its dual

 Transition Loci on Moduli Spaces of Calabi-Yau Manifolds correspond to Minkowski Vacua of the corresponding gauged N = 2 supergravity

- Transition Loci on Moduli Spaces of Calabi-Yau Manifolds correspond to Minkowski Vacua of the corresponding gauged N = 2 supergravity
- Super-Higgs mechanism gives rise to a Coulomb- and a Higgs-Branch describing the transition

- Transition Loci on Moduli Spaces of Calabi-Yau Manifolds correspond to Minkowski Vacua of the corresponding gauged *N* = 2 supergravity
- Super-Higgs mechanism gives rise to a Coulomb- and a Higgs-Branch describing the transition
- These Loci appear typically at conifold singularities \Rightarrow break down of the effective supergravity description
 - > Identification is still possible by relaxing certain supergravity constraints

- Transition Loci on Moduli Spaces of Calabi-Yau Manifolds correspond to Minkowski Vacua of the corresponding gauged *N* = 2 supergravity
- Super-Higgs mechanism gives rise to a Coulomb- and a Higgs-Branch describing the transition
- These Loci appear typically at conifold singularities \Rightarrow break down of the effective supergravity description
 - > Identification is still possible by relaxing certain supergravity constraints
- Work in progress:

- Transition Loci on Moduli Spaces of Calabi-Yau Manifolds correspond to Minkowski Vacua of the corresponding gauged *N* = 2 supergravity
- Super-Higgs mechanism gives rise to a Coulomb- and a Higgs-Branch describing the transition
- These Loci appear typically at conifold singularities \Rightarrow break down of the effective supergravity description
 - > Identification is still possible by relaxing certain supergravity constraints
- Work in progress:
 - Consistent description of transition loci as Minkowski Vacua in rigid gauged N = 2 supergravity
 - Model \mathcal{M}_H via C-Map construction
 - Obtain non-trivial Coulomb- and Higgs-Branches on the vacuum locus

- Transition Loci on Moduli Spaces of Calabi-Yau Manifolds correspond to Minkowski Vacua of the corresponding gauged N = 2 supergravity
- Super-Higgs mechanism gives rise to a Coulomb- and a Higgs-Branch describing the transition
- These Loci appear typically at conifold singularities \Rightarrow break down of the effective supergravity description
 - Identification is still possible by relaxing certain supergravity constraints
- Work in progress:
 - Consistent description of transition loci as Minkowski Vacua in rigid gauged N = 2 supergravity
 - - Model \mathcal{M}_H via C-Map construction
 - Obtain non-trivial Coulomb- and Higgs-Branches on the vacuum locus
 - Systematic search for transition subloci on two-dimensional local special Kähler manifolds
 - Use arithmetic techniques to spot factorizations of the Hodge structure

[Candelas, de la Ossa, Elmi, van Straten, 2019] [Candelas, de la Ossa, Kuusela, McGovern, 2023]