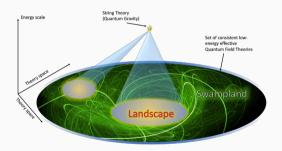
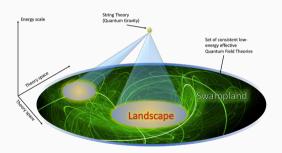

# Semi-stable Degenerations and the Distance Conjecture in F-theory

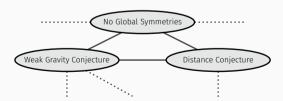
Rafael Álvarez-García work together with Seung-Joo Lee and Timo Weigand arXiv:2310.XXXXX and arXiv:2311.XXXXX 27th September 2023

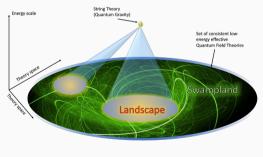

DESY Theory Workshop 2023



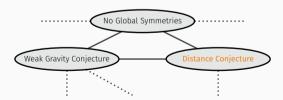

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

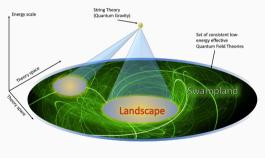



• Swampland constraints: of general scope but conjectural in nature.




- Swampland constraints: of general scope but conjectural in nature.
- String theory: framework for QG allowing for explicit tests of the conjectures.





- Swampland constraints: of general scope but conjectural in nature.
- String theory: framework for QG allowing for explicit tests of the conjectures.





- Swampland constraints: of general scope but conjectural in nature.
- String theory: framework for QG allowing for explicit tests of the conjectures.





An infinite tower of states becomes massless at infinite distance.

As a consequence, the effective description of the theory must break.

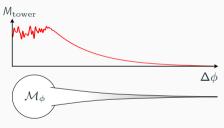



Figure adapted from [Kläwer '21].

An infinite tower of states becomes massless at infinite distance.

As a consequence, the effective description of the theory must break.

• What is the nature of the states that become light?

• What theories do we encounter at infinite distance?

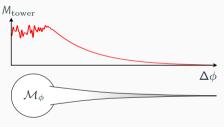



Figure adapted from [Kläwer '21].

An infinite tower of states becomes massless at infinite distance.

As a consequence, the effective description of the theory must break.

- What is the nature of the states that become light? Kaluza-Klein states, tensionless string, something else?
- What theories do we encounter at infinite distance?

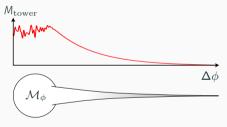



Figure adapted from [Kläwer '21].

An infinite tower of states becomes massless at infinite distance.

As a consequence, the effective description of the theory must break.

- What is the nature of the states that become light? Kaluza-Klein states, tensionless string, something else?
- What theories do we encounter at infinite distance? A qualitatively different theory of quantum gravity? Something that we already know?

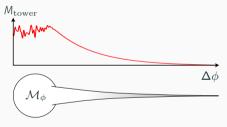



Figure adapted from [Kläwer '21].

An infinite tower of states becomes massless at infinite distance.

As a consequence, the effective description of the theory must break.

- What is the nature of the states that become light? Kaluza-Klein states, tensionless string, something else?
- What theories do we encounter at infinite distance? A qualitatively different theory of quantum gravity? Something that we already know?

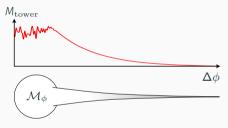



Figure adapted from [Kläwer '21].

Emergent String Conjecture: a refinement of the SDC statement.

Semi-stable Degenerations and the Distance Conjecture in F-theory | Rafael Álvarez-García

An infinite tower of states becomes massless at infinite distance.

As a consequence, the effective description of the theory must break.

- What is the nature of the states that become light? Kaluza-Klein states, tensionless string, something else?
- What theories do we encounter at infinite distance? A qualitatively different theory of quantum gravity? Something that we already know?

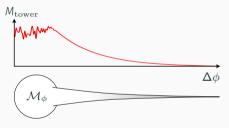



Figure adapted from [Kläwer '21].

Emergent String Conjecture: a refinement of the SDC statement.

Semi-stable Degenerations and the Distance Conjecture in F-theory | Rafael Álvarez-García

## **Emergent String Conjecture**

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand 19] Infinite-distance limits in moduli space are either

- pure decompactification limits (infinite tower of KK states),
- or emergent string limits (infinite tower of string excitations).

**Emergent string limit:** transition to a duality frame determined by a unique emergent critical weakly coupled string.



## **Emergent String Conjecture**

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand '19] Infinite-distance limits in moduli space are either

- pure decompactification limits (infinite tower of KK states),
- or emergent string limits (infinite tower of string excitations).

**Emergent string limit:** transition to a duality frame determined by a unique emergent critical weakly coupled string.

### Confirmed in various non-trivial setups:

Kähler moduli F/M/IIA-theory in 6D/5D/4D Complex structure of F-theory in 8D M-theory on  $G_2$  manifolds 4D  $\mathcal{N} = 1$  F-theory +corrections 4D  $\mathcal{N} = 2$  hypermultiplets

[Lee, Lerche, Weigand '18, '19, '20] [Lee, (Lerche), Weigand '21] [Xu '20] [Lee, Lerche, Weigand '19] [Kläwer, Lee, Weigand, Wiesner '20] [(Baume), Marchesano, Wiesner '19]



## **Emergent String Conjecture**

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand '19] Infinite-distance limits in moduli space are either

- pure decompactification limits (infinite tower of KK states),
- or emergent string limits (infinite tower of string excitations).

**Emergent string limit:** transition to a duality frame determined by a unique emergent critical weakly coupled string.

Confirmed in various non-trivial setups: Kähler moduli F/M/IIA-theory in 6D/5D/4D Complex structure of F-theory in 8D

M-theory on  $G_2$  manifolds 4D  $\mathcal{N} = 1$  F-theory +corrections 4D  $\mathcal{N} = 2$  hypermultiplets [Lee, Lerche, Weigand '18, '19, '20] [Lee, (Lerche), Weigand '21] [Xu '20] [Lee, Lerche, Weigand '19] [Kläwer, Lee, Weigand, Wiesner '20] [(Baume), Marchesano, Wiesner '19]



Does Quantum Gravity impose any restrictions on *critical membranes* becoming asymptotically light at leading parametric scale? [RAG, Kläwer, Weigand '21]

Does Quantum Gravity impose any restrictions on *critical membranes* becoming asymptotically light at leading parametric scale? [RAG, Kläwer, Weigand '21]

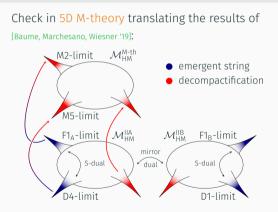
• Consistency under dimensional reduction of the Emergent String Conjecture demands that for critical membranes

$$\mu = \frac{T_{\text{brane}}^{(D)}}{\left(M_{\text{KK}}^{(D)}\right)^3} \to \infty \,.$$

In the saturated case

$$\left(\frac{M_{KK}^{(D)}}{M_{Pl}^{(D)}}\right)^3 \sim \frac{1}{\mu^3} \;, \qquad \frac{T_{brane}^{(D)}}{\left(M_{Pl}^{(D)}\right)^3} \sim \frac{1}{\mu^2} \;.$$

Semi-stable Degenerations and the Distance Conjecture in F-theory | Rafael Álvarez-García


Does Quantum Gravity impose any restrictions on *critical membranes* becoming asymptotically light at leading parametric scale? [RAG, Kläwer, Weigand '21]

• Consistency under dimensional reduction of the Emergent String Conjecture demands that for critical membranes

$$\mu = \frac{T_{\text{brane}}^{(D)}}{\left(M_{\text{KK}}^{(D)}\right)^3} \to \infty \,.$$

In the saturated case

$$\left(\frac{M_{KK}^{(D)}}{M_{Pl}^{(D)}}
ight)^3 \sim \frac{1}{\mu^3} \;, \qquad \frac{T_{brane}^{(D)}}{\left(M_{Pl}^{(D)}
ight)^3} \sim \frac{1}{\mu^2} \;.$$



See also [Robles-Llana, Saueressig, Theis, Vandoren '07], etc.

Semi-stable Degenerations and the Distance Conjecture in F-theory | Rafael Álvarez-García

#### F-theory [Vafa '96]

Most general currently controllable framework for studying geometric string vacua incorporating the regime non-perturbative in the string coupling  $g_s$ .

#### F-theory [Vafa '96]

Most general currently controllable framework for studying geometric string vacua incorporating the regime non-perturbative in the string coupling  $g_s$ .

Type IIB picture of F-theory:

- Compactifications with 7-branes
- Backreaction  $\Rightarrow$  holomorphically varying au
- Contains regions of strong coupling in space-time
- Use the non-perturbative SL(2, Z)-symmetry of Type IIB

#### F-theory [Vafa '96]

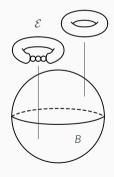
Most general currently controllable framework for studying geometric string vacua incorporating the regime non-perturbative in the string coupling  $g_s$ .

Type IIB picture of F-theory:

 $\mathcal{E} \longrightarrow Y$ 

• Compactifications with 7-branes

 $\pi_{\mathrm{ell}}$  .


- Backreaction  $\Rightarrow$  holomorphically varying au
- Contains regions of strong coupling in space-time
- Use the non-perturbative  $SL(2,\mathbb{Z})$ -symmetry of Type IIB

Elliptic fibration:

- Elliptic fiber: au profile.
- Base *B*: physical space-time.

$$y^2 = x^3 + fxz^4 + gz^6$$

 $f \in H^0\left(B, \overline{K}_B^{\otimes 4}
ight), \quad g \in H^0\left(B, \overline{K}_B^{\otimes 6}
ight).$ 



# F-theory

F-theory complex structure moduli:

- IIB complex structure moduli,
- D7-brane moduli,
- axio-dilaton  $\tau$ .

# F-theory

F-theory complex structure moduli:

- IIB complex structure moduli,
- D7-brane moduli,
- axio-dilaton  $\tau$ .

Geometry & Physics:

Singularities in codimension-one in B
 Gauge algebra associated with 7-branes

## F-theory

F-theory complex structure moduli:

- IIB complex structure moduli,
- D7-brane moduli,
- axio-dilaton  $\tau$ .

Geometry & Physics:

- Classification by Kodaria-Néron for Weierstrass models:

$$y^2 = x^3 + fxz^4 + gz^6$$
,  $\Delta = 4f^3 + 27g^2$ .

| Algebra        | Kodaira         | ord( <i>f</i> ) | $\operatorname{ord}(g)$ | $\operatorname{ord}(\Delta)$ |
|----------------|-----------------|-----------------|-------------------------|------------------------------|
| A <sub>1</sub> | III             | 1               | ≥ 2                     | 3                            |
| A <sub>2</sub> | IV              | ≥ 2             | 2                       | 4                            |
| An             | $I_{n+1}$       | 0               | 0                       | n + 1                        |
| D <sub>n</sub> | $I_{n-4}^*$     | 2               | 3                       | n + 2                        |
| $E_6$          | $IV^*$          | ≥ 3             | 4                       | 8                            |
| E <sub>7</sub> | $III^*$         | 3               | $\geq 5$                | 9                            |
| E <sub>8</sub> | $\mathrm{II}^*$ | $\geq 4$        | 5                       | 10                           |
| _              | non-minimal     | ≥ 4             | ≥ 6                     | ≥ 12                         |

Part of the Kodaira-Tate table for singular fibers of Weierstrass models.

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand '19] Infinite distance limits in moduli space are either

- pure decompactification limits (infinite tower of KK states),
- or emergent string limits (infinite tower of string excitations).



Emergent String Conjecture (ESC) [Lee, Lerche, Weigand '19] Infinite distance limits in moduli space are either

- pure decompactification limits (infinite tower of KK states),
- or emergent string limits (infinite tower of string excitations).

Does it hold in the  $\mathcal{M}_{c.s.}$  of F-theory? See [Lee, (Lerche), Weigand '21] for 8D.



Swampland

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand '19] Infinite distance limits in moduli space are either

- pure decompactification limits (infinite tower of KK states),
- or emergent string limits (infinite tower of string excitations).

Does it hold in the  $\mathcal{M}_{c.s.}$  of F-theory? See [Lee, (Lerche), Weigand '21] for 8D.



Swampland

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand '19] Infinite distance limits in moduli space are either

- pure decompactification limits (infinite tower of KK states),
- or emergent string limits (infinite tower of string excitations).

Does it hold in the  $\mathcal{M}_{\text{c.s.}}$  of F-theory? See [Lee, (Lerche), Weigand '21] for 8D.



Swampland

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand '19] Infinite distance limits in moduli space are either

- pure decompactification limits (infinite tower of KK states),
- or emergent string limits (infinite tower of string excitations).



Does it hold in the  $\mathcal{M}_{c.s.}$  of F-theory? See [Lee, (Lerche), Weigand '21] for 8D.

What are non-minimal sings. in F-theory?

Swampland

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand '19] Infinite distance limits in moduli space are either

- pure decompactification limits (infinite tower of KK states),
- or emergent string limits (infinite tower of string excitations).

Does it hold in the  $\mathcal{M}_{c.s.}$  of F-theory? See [Lee, (Lerche), Weigand '21] for 8D.

What are non-minimal sings. in F-theory?

• No crepant resolution in the fiber.



Swampland

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand '19] Infinite distance limits in moduli space are either

- pure decompactification limits (infinite tower of KK states),
- or emergent string limits (infinite tower of string excitations).

Does it hold in the  $\mathcal{M}_{c.s.}$  of F-theory? See [Lee, (Lerche), Weigand '21] for 8D.

What are non-minimal sings. in F-theory?

- No crepant resolution in the fiber.
- Typically discarded in F-theory.



F-theory

Swampland

F-theory

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand '19] Infinite distance limits in moduli space are either

- pure decompactification limits (infinite tower of KK states),
- or emergent string limits (infinite tower of string excitations).



Does it hold in the  $\mathcal{M}_{\text{c.s.}}$  of F-theory? See [Lee, (Lerche), Weigand '21] for 8D.

What are non-minimal sings. in F-theory?

- No crepant resolution in the fiber.
- Typically discarded in F-theory.

They are the open-moduli (complex structure) infinite-distance limits of F-theory.

| $\operatorname{codim}(\Sigma)$ | $\operatorname{ord}(f,g)_{\Sigma}$ | Interpretation     |
|--------------------------------|------------------------------------|--------------------|
| 1                              | $(\geq 4, \geq 6)$                 | $\infty$ -distance |
| 2                              | ([4,8),[6,12))                     | SCFTs              |
| 2                              | $(\geq 8, \geq 12)$                | $\infty$ -distance |

Swampland

F-theory

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand '19] Infinite distance limits in moduli space are either

- pure decompactification limits (infinite tower of KK states),
- or emergent string limits (infinite tower of string excitations).

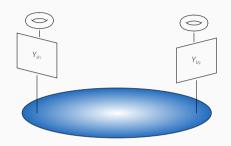


Does it hold in the  $\mathcal{M}_{\text{c.s.}}$  of F-theory? See [Lee, (Lerche), Weigand '21] for 8D.

What are non-minimal sings. in F-theory?

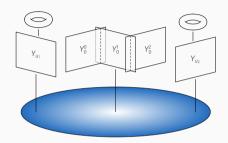
- No crepant resolution in the fiber.
- Typically discarded in F-theory.
- They are the open-moduli (complex structure) infinite-distance limits of F-theory.

| $\operatorname{codim}(\Sigma)$ | $\operatorname{ord}(f, g)_{\Sigma}$ | Interpretation     |
|--------------------------------|-------------------------------------|--------------------|
| 1                              | ( $\geq$ 4, $\geq$ 6)               | $\infty$ -distance |
| 2                              | ([4,8),[6,12))                      | SCFTs              |
| 2                              | ( $\geq$ 8, $\geq$ 12)              | $\infty$ -distance |


#### Goal of this work

Understand the geometry and physics of the infinite-distance non-minimal singularities of CY<sub>3</sub>.

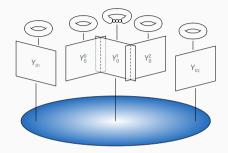
Some core features discussed in [RAG, Lee, Weigand (to appear)]<sup>2</sup>:


## Condensed summary

Some core features discussed in [RAG, Lee, Weigand (to appear)]<sup>2</sup>:



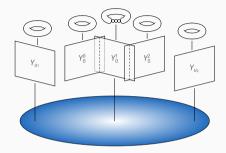
Some core features discussed in [RAG, Lee, Weigand (to appear)]<sup>2</sup>:

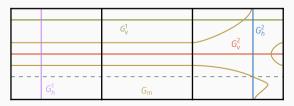

• Spacetime degenerates into components.



# Condensed summary

Some core features discussed in [RAG, Lee, Weigand (to appear)]<sup>2</sup>:

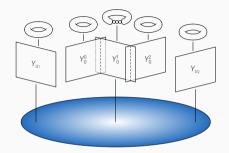

• Spacetime degenerates into components at local weak and strong coupling.

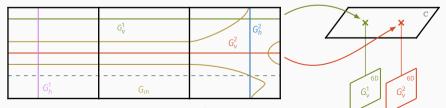



# Condensed summary

Some core features discussed in [RAG, Lee, Weigand (to appear)]<sup>2</sup>:

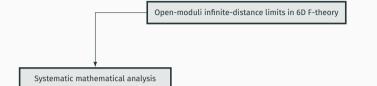
- Spacetime degenerates into components at local weak and strong coupling.
- 7-branes can extend between components, leading to local enhancements.



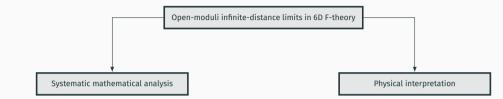



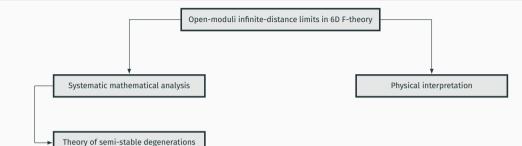

Semi-stable Degenerations and the Distance Conjecture in F-theory | Rafael Álvarez-García

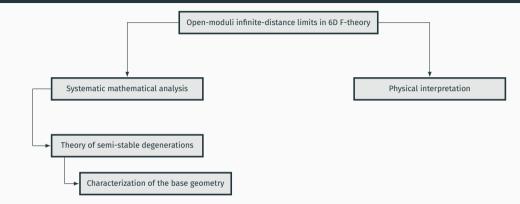
Some core features discussed in [RAG, Lee, Weigand (to appear)]<sup>2</sup>:

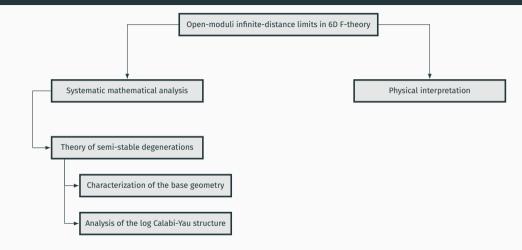

- Spacetime degenerates into components at local weak and strong coupling.
- 7-branes can extend between components, leading to local enhancements.
- Decompactification limits can be complicated, leading to defect theories.

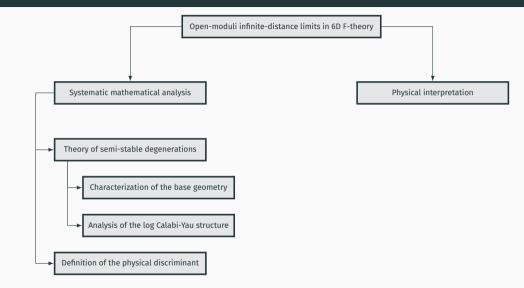


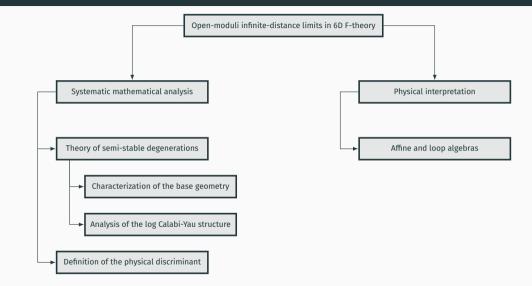


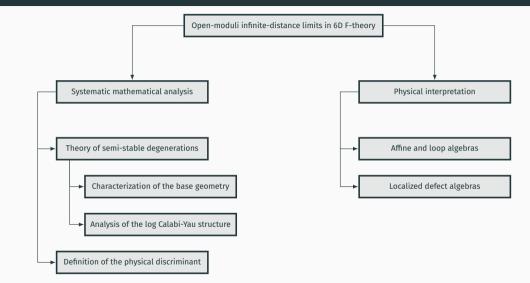


Semi-stable Degenerations and the Distance Conjecture in F-theory | Rafael Álvarez-García

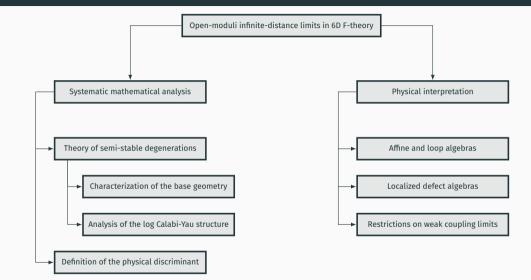

Open-moduli infinite-distance limits in 6D F-theory

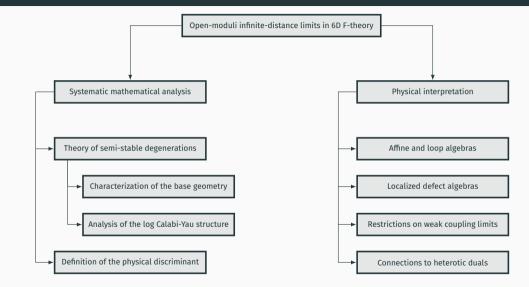


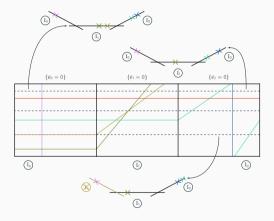


## Structure of the study



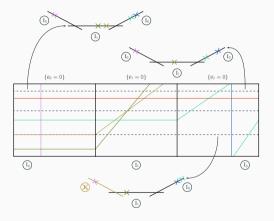











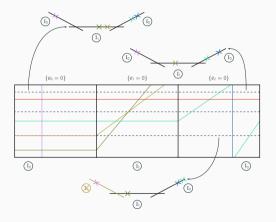




Semi-stable Degenerations and the Distance Conjecture in F-theory | Rafael Álvarez-García

### Summary

• Non-minimal singularities in F-theory

Open-moduli infinite-distance limits

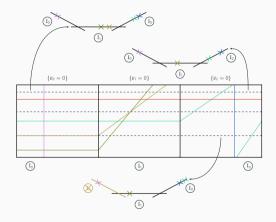



#### Summary

• Non-minimal singularities in F-theory

Open-moduli infinite-distance limits

- Studied through a systematic geometrical analysis, e.g.
  - possible degeneration types,
  - bounds on the defect gauge algebras,
  - existence of global weak coupling limits.




### Summary

• Non-minimal singularities in F-theory

Open-moduli infinite-distance limits

- Studied through a systematic geometrical analysis, e.g.
  - possible degeneration types,
  - bounds on the defect gauge algebras,
  - existence of global weak coupling limits.
- Limits interpreted as
  - partial decompactification with defects,
  - emergent string limits (weak coupling).



Thank you!