Analytic bootstrap for defect CFTs

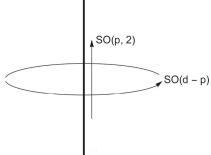
Davide Bonomi

City, University of London

based on 2205.09775, 2212.02524 and upcoming work with L.Bianchi, E. de Sabbata and A. Gimenez Grau

Conformal defects

Conformal defects = extended operators that preserve conformal symmetry.



They have many interesting realizations in condensed matter and high energy physics such as

- Boundary and interfaces.
- Impurities in materials at the critical point.
- Wilson and t'Hooft lines in (super)conformal gauge theories.

Correlators in defect CFTs

A p-dimensional defect breaks the bulk conformal group as

$$SO(d+1,1) \rightarrow SO(p+1,1) \oplus SO(d-p)$$

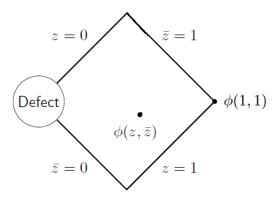
- There are two CFTs: a p-dimensional defect CFT $(\hat{\Delta}, s)$ and a bulk CFT (Δ, ℓ) .
- Bulk operators acquire non-trivial 1pt functions and couplings to the defect [Billo', Goncalves, Lauria, Meineri '16].

$$\begin{split} \langle \phi(x) \rangle &= \frac{a_{\phi}}{|x_{\perp}|^{\Delta_{\phi}}} \\ \langle \phi(x) \hat{O}(y) \rangle &= \frac{b_{\phi \hat{O}}}{|x_{\perp}|^{\Delta_{\phi} - \hat{\Delta}_{\hat{O}}} (|x_{\perp}|^2 + y^2)^{\hat{\Delta}}} \end{split}$$

2pt functions in presence of a defect

We are interested in the 2pt function of bulk operators

$$\langle \phi_i(x_1) \phi_j(x_2) \rangle = \frac{\delta_{ij}}{|x_1^{\perp} x_2^{\perp}|^{\Delta_{\phi}}} F(z, \bar{z})$$



The defect bootstrap

The 2pt function can be expanded using the bulk-bulk OPE

$$\phi \times \phi \sim \sum_{\mathcal{O}} \lambda_{\phi\phi\mathcal{O}} \mathcal{O}$$

or the bulk-defect OPE

$$\phi \sim \sum_{\widehat{\mathcal{O}}} b_{\phi \widehat{\mathcal{O}}} \widehat{\mathcal{O}}$$

which imply

$$F(z,\bar{z}) = \sum_{\mathcal{O}} \lambda_{\phi\phi\mathcal{O}} a_{\mathcal{O}} f_{\Delta,\ell}(z,\bar{z}) = \sum_{\widehat{\mathcal{O}}} b_{\phi\widehat{\mathcal{O}}}^2 \hat{f}_{\hat{\Delta},s}(z,\bar{z})$$

Consistency between the two expansions constrains the spectrum of the bulk and defect CFTs and fixes $F(z, \bar{z})$.

The analytic bootstrap

The interplay between bulk and defect data is captured by the inversion formula [Lemos, Liendo, Meineri, Sarkar '17]

$$c(\hat{\Delta}, s) = -\sum_{\widehat{\mathcal{O}}} \frac{b_{\phi \widehat{\mathcal{O}}}^2}{\hat{\Delta} - \hat{\Delta}_{\widehat{\mathcal{O}}}} = \int_0^1 d^2 z \ I_{\hat{\Delta}, s}(z, \bar{z}) \ \mathsf{Disc} F(z, \bar{z})$$

and the dispersion relation [Bianchi, DB '22], [Barrat, Gimenez-Grau, Liendo '22]

$$F(r,w) = \int_0^r \frac{dw'}{2\pi i} \left(\frac{1}{w' - w} + \frac{1}{w' - \frac{1}{w}} - \frac{1}{w'} \right) \operatorname{Disc} F(r,w')$$

$$z = rw \quad \bar{z} = \frac{r}{w}$$

where the discontinuity is

$$\mathsf{Disc} F(z, \bar{z}) = F(z, \bar{z} + i\epsilon) - F(z, \bar{z} - i\epsilon)$$

Subtlety: these formulas may miss low spin $s < s^*$ contributions.

The discontinuity in perturbation theory

If the theory has a small coupling expansion

$$\Delta_{\mathcal{O}} = 2\Delta_{\phi} + \gamma_{\mathcal{O}}^{(1)}g + O\left(g^{2}\right) \quad \lambda_{\phi\phi\mathcal{O}}a_{\mathcal{O}} = \lambda_{\phi\phi\mathcal{O}}a_{\mathcal{O}}^{(0)} + \lambda_{\phi\phi\mathcal{O}}a_{\mathcal{O}}^{(1)}g + O\left(g^{2}\right)$$

the discontinuity reads

$$\operatorname{Disc} F(z, \bar{z})|_{\mathcal{O}(g)} \sim g \sum_{\mathcal{O}} \lambda_{\phi\phi\mathcal{O}} a_{\mathcal{O}}^{(0)} \gamma_{\mathcal{O}}^{(1)} f_{\Delta,\ell}(z, \bar{z})$$

- It can be expressed in terms of data of the bulk operators.
- At any given order it depends only on lower order coefficients and on anomalous dimensions (independent of the defect).
- If we know the theory without the defect (e.g. O(N) model), we can compute the discontinuity perturbatively.

Example 1: The localized magnetic field in the O(N) model

Consider the O(N) model

$$S = \int d^d x \left[\frac{1}{2} \left(\partial_\mu \phi_i \right)^2 + \frac{1}{2} m^2 (\phi_i)^2 + \frac{\lambda}{4!} \left(\phi_i \phi_i \right)^2 \right]$$

and insert the following line operator in the path integral

$$D = e^{-h_0 \int d\tau \, \phi_1(\tau)}$$

- The deformation triggers a RG flow which admits an infrared fixed point in $d = 4 \varepsilon$ [Cuomo, Komargodski, Mezei '21].
- Physically this is an impurity created by applying an external magnetic field in a critical magnet, but only at a few lattice sites.
- One can compute $\langle \phi_i(x)\phi_j(y)\rangle$ and extract the defect CFT data in ε -expansion from the inversion formula / dispersion relation [Bianchi, DB and de Sabbata '22] [Gimenez-Grau '22].

$\langle \phi \phi \rangle$ in presence of a localized magnetic field for N=1

We have the bulk OPE

$$\phi \times \phi \sim 1 + \phi^2 + \mathcal{O}_{\ell > 0}$$

with

$$\Delta_{\phi^{2}}=2\Delta_{\phi}+\varepsilon\gamma_{\phi^{2}}+\textit{O}\left(\varepsilon^{2}\right)\quad\Delta_{\ell}=2\Delta_{\phi}+\ell+\textit{O}\left(\varepsilon^{2}\right)$$

- The discontinuity depends only on one (known) bulk operator!
- Using dispersion / inversion formulae

$$F(z,\bar{z}) = \left(\frac{\sqrt{z\bar{z}}}{(1-z)(1-\bar{z})}\right)^{\Delta_{\phi}} + \varepsilon \frac{3}{8} \underbrace{H(z,\bar{z})}_{\text{special function}} + \text{low spin terms}$$

$$\hat{\Delta} = 1 + s + \varepsilon \frac{1 - s}{2s + 1}$$
 $\hat{b}_s^2 = 1 + \varepsilon \frac{-2(s - 1)H_s - 3H_{s + \frac{1}{2}}}{2(2s + 1)}$

$\langle \phi \phi angle$ in presence of a localized magnetic field for $\emph{N}=1$

We have the bulk OPE

$$\phi \times \phi \sim 1 + \phi^2 + \mathcal{O}_{\ell > 0}$$

with

$$\Delta_{\phi^2} = 2\Delta_{\phi} + \varepsilon \gamma_{\phi^2} + O\left(\varepsilon^2\right) \quad \Delta_{\ell} = 2\Delta_{\phi} + \ell + O\left(\varepsilon^2\right)$$

- The discontinuity depends only on one (known) bulk operator!
- Using dispersion / inversion formulae + diagrams

$$F(z,\bar{z}) = \left(\frac{\sqrt{z\bar{z}}}{(1-z)(1-\bar{z})}\right)^{\Delta_{\phi}} + \varepsilon \frac{3}{8}H(z,\bar{z}) + \underbrace{a_{\phi}^{2(0)} + \varepsilon a_{\phi}^{2(1)}}_{\text{defect identity operator}}$$

$$\hat{\Delta} = 1 + s + \varepsilon \frac{1 - s}{2s + 1}$$
 $\hat{b}_s^2 = 1 + \varepsilon \frac{-2(s - 1)H_s - 3H_{s + \frac{1}{2}}}{2(2s + 1)}$

General results for O(N)

• One can generalize the previous result for the general O(N) case and compute

$$\langle \phi_i(x)\phi_j(y)\rangle = \frac{\hat{F}_S(z,\bar{z})\delta_{i1}\delta_{j1} + \hat{F}_V(z,\bar{z})(\delta_{ij} - \delta_{i1}\delta_{j1})}{|x_{\perp}|^{\Delta_{\phi}}|y_{\perp}|^{\Delta_{\phi}}}$$

and extract the CFT data

$$\begin{split} \hat{\Delta}_S &= 1 + s + \varepsilon \frac{1 - s}{2s + 1} & \hat{b}_{S,s}^2 &= 1 + \varepsilon \frac{-2(s - 1)H_s - 3H_{s + \frac{1}{2}}}{2(2s + 1)} \\ \hat{\Delta}_V &= 1 + s - \varepsilon \frac{s}{2s + 1} & \hat{b}_{V,s}^2 &= 1 - \varepsilon \frac{(2s + 1)\left(2sH_s + H_{s - \frac{1}{2}}\right) + 2}{2(2s + 1)^2} \end{split}$$

- The results can be checked with explicit diagrammatic calculations.
- One can also extract the bulk 1pt functions $a_{\mathcal{O}_{\ell}}$ from the full result.

Example 2: The spin impurity in the O(3) model

Now consider the critical O(3) model and insert another defect

$$D_{j} = \mathit{Tr}_{2j+1} \left(\mathit{Pe}^{\gamma_{0} \int d au \phi^{a} T^{a}}
ight)$$

- The theory flows to a fixed point in $d = 4 \varepsilon$.
- Physically it represent an external atom of spin j in a quantum anti-ferromagnet at the critical point [Sachdev, Buragohain and Vojta '99].
- This setup can be generalized to SU(N) and is relevant for the study of supersymmetric Wilson lines in $\mathcal{N}=4$ Super Yang-Mills [Beccaria, Giombi and Tseytlin '22].

$\langle \phi^a \phi^a \rangle$ in presence of a spin impurity

The bulk theory is the same as before, the only difference are the tree-level 1pt functions $(a_{\phi^2} \sim \varepsilon)$, therefore

$$F(z,\bar{z}) = \left(\frac{\sqrt{z\bar{z}}}{(1-z)(1-\bar{z})}\right)^{\Delta_{\phi}} + \frac{5}{66}\pi^2 j(j+1)\varepsilon^2 H(z,\bar{z}) + \text{low spin terms}$$

and

$$\hat{\Delta} = \Delta_{\phi} + s + \frac{5\pi^2 j(j+1)\varepsilon^2}{33(2s+1)} \quad \hat{b}_s^2 = \frac{(\Delta_{\phi})_s}{s!} - \frac{5\pi^2 j(j+1)\varepsilon^2}{33} \left(\frac{H_s - H_{s-\frac{1}{2}}}{2s+1} - \frac{2}{2s+1} \right)$$

However in this case we have a non trivial low spin ambiguity!

$\langle \phi^a \phi^a \rangle$ in presence of a spin impurity

From a diagrammatic computation we fix the ambiguities

$$F(z,\bar{z}) = \left(\frac{\sqrt{z\bar{z}}}{(1-z)(1-\bar{z})}\right)^{\Delta_{\phi}} + \frac{5}{66}\pi^{2}j(j+1)\varepsilon^{2}H(z,\bar{z}) + \frac{1}{6}\pi^{2}j(j+1)\varepsilon + \frac{1}{12}\pi^{2}j(j+1)\varepsilon^{2}\log\left(\frac{4z\bar{z}}{(1+z\bar{z})^{2}}\right) + \frac{5}{66}\pi^{2}j(j+1)\varepsilon^{2}(1+\log 2)$$

The extra term consists of contributions from two spin zero operators

$$\begin{array}{ll} \hat{\Delta}_{-} = \frac{\varepsilon}{2} & \hat{b}_{-}^2 = \frac{\pi^2 j (j+1)}{6} \left(\varepsilon \left(\frac{16}{11} + \frac{5}{11} \log 2 \right) + \varepsilon^2 \log 2 \right) \\ \hat{\Delta}_{+} = \Delta_{\phi} + \frac{5\pi^2 j (j+1)\varepsilon^2}{33} & \hat{b}_{+}^2 = 1 + \frac{\pi^2 j (j+1)\varepsilon^2}{6} \left(\frac{31}{11} - \frac{20}{11} \log 2 \right) \end{array}$$

Conclusions and Outlook

- We have shown that the analytic bootstrap provides a systematic method to solve conformal defects perturbatively (up to low spin ambiguities).
- We have used the inversion formula / dispersion relation to study 2pt functions of bulk fields in the O(N) model in presence of line defects.
- The bootstrap results are universal, they apply to essentially any line defect in that theory.
- One needs to supplement the bootstrap with other methods to fix the ambiguities.

Future directions:

- Higher dimensional defects (surfaces, boundaries).
- Higher orders in ε or large N.
- Defects in fermionic theories.

Thank you for your attention!

Analytic bootstrap for defect CFTs

Davide Bonomi