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AdS3 problem

String model solvability and Gauge/Gravity completeness

AdS3/CFT2 integrability and exact techniques

AdS3 × S3 ×M4 complete solvability problem
I S-matrix (dressing phases)
I Ground State Energy
I Finite-size effects
I Twisted sector on the worldsheet (Non-BPS vacua)
I The full spectrum
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Outline

Thermodynamic Bethe Ansatz and Mirror formulation

AdS3 × S3 × T 4 RR-flux: Twisted vacua and Y -system

Generalised Lüscher formalism

Mixed flux GSE: TBA and AdS3 × S3 × S3 × S1 lightcone
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The scope of AdSn

The Gauge/Gravity duality: mapping of string theory on AdS space and
conformal field theory – string energy spectrum/spectrum of scaling
dimensions of the CFT.

Integrability perspective: global symmetries, e.g. AdS5 × S5 superspace
isometries/ N = 4 superconformal symmetry – observable computation.
Further progress includes completeness

• AdS4 × CP3 (BA, QSC)

• AdS3× S3×M4 =

{
M4 = T 4

M4 = S3× S1
(TBA, QSC proposals)

• AdS2 × S2 × T 6 (Generalised ABA conjecture)
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From group-theoretic point

AdSn × Sn = Ĝ/H supercosets, with superisometry Ĝ include:

AdS5 × S5 −→ PSU(2, 2|4)

SO(1, 4)× SO(5)

AdS3 × S3 −→ PSU(1, 1|2)× PSU(1, 1|2)

SO(1, 2)× SO(3)

AdS2 × S2 −→ PSU(1, 1|2)

SO(1, 1)× SO(2)

In general the AdS3 background can be equipped with 3-form fluxes (RR
and NSNS)
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Mirror formulation

Evolution torus

A theory on a torus can
be described by the partition function
Z on the circle at finite temperature.

Evolution of
such theory can be given through either
of the cycles, where p → −i H̃, H → i p̃

Space and time
are interchanged in the Mirror Model
σ → τ̃ = −iσ and τ → σ̃ = iτ , which
constitutes the double Wick-rotation
of the initial superstring model.
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Mirror formulation
It can be shown that mirror partition function Z̃ agrees with the initial one

Z̃ =
∑
k

〈
ψ̃k

∣∣∣ e−LH̃ ∣∣∣ψ̃k

〉
=

∫
Dp̃Dx e

∫ R
0

dτ
∫ L

0
dσ(ipx′−H̃) Z̃(L,R) = Z(L,R)

where in the original model, the size is L and R is the inverse temperature
β [Zamolodchikov ’90]. In the mirror model it results in size R and
temperature 1/L (swap).

Considering R → +∞ forms
decompactifying limit:

Zero T , Finite volume

Finite T , Infinite volume

Hence in the infinite volume limit finds relation on GSE (original) and bulk
free energy (mirror)

R → +∞ : E (L) = Lf̃ (L)

where f̃ at 1/L can be obtained from the Mirror TBA.
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AdS3 × S3 × T 4 Mirror TBA

S(p1, p2) = Σ · Ŝ(p1, p2)⊗ Ŝ(p1, p2)

The mirror derivation follows

S-matrix→ Bethe-Yang→ Densities
TDL−−−→ Mirror TBA

Fundamentally the AdS3 MTBA depends on mirror momentum p̃
(rapidity) and a set of Y -functions:

N
(Q)
x particles with

∑∞
Q=1 N

(Q)
x = Nx described by YQ/ȲQ-functions

N
(α̇)
0 massless excitations Y

(α̇)
0 , with −1 < x

(α̇)
k < 1 xk ∈ R

N
(α)
y auxiliary particles (roots) by Y

(α)
± , with |yα| = 1 .

that arise in the string hypothesis.
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Non-BPS vacuum

As indicated above, for non-BPS vacua one must introduce twist
dependence

µ = 0 µ = π

Non-BPS
Periodic ψ Antiperiodic ψ

µ

Witten index

GSE twist interpolation between supervacuum and Non-BPS sector (even and
odd winding sectors)
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AdS3 × S3 × T 4 RR Mirror TBA

From the AdS3 × S3 × T 4 mirror TBA the ground state energy receives
contributions from both chiral massive sectors as well as massless
excitations

E (µ, h, L) =−
+∞∑
Q=1

∞∫
−∞

du

2π

dp̃Q

du
log
[
(1 + YQ)

(
1 + Y Q

)]

−
N0∑
α̇=1

∫
|u|>2

du

2π

dp̃0

du
log
[
1 + Y

(α̇)
0

]

which implies energy dependence on twist µ, string tension h =
√
λ

2π and
lightcone momentum L (gauge fixed).

In the temporal gauge L = J, where J associated to the U(1) isometry of
S3 and gets quantised.
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Massive

The analytic structure of the TBA system and its solvability can be gained
from massive (massless) sector. Hence the equation for left particles

− logYQ = LẼQ − log (1 + YQ′) ? K
Q′Q
sl(2) − log

(
1 + Y Q′

)
? K̃Q′Q

su(2)

−
∑
α̇

log
(

1 + Y
(α̇)
0

)
?̌K 0Q

−
∑
α=1,2

log

(
1− e iµα

Y
(α)
+

)
?̂K yQ

+ −
∑
α=1,2

log

(
1− e iµα

Y
(α)
−

)
?̂K yQ
−

µα = (−1)αµ, α = {1, 2}

allows to evaluate the leading contributing terms when perturbed in µ.
K ab are kernels in the appropriate mirror particle sector.

Right and massless equations admit similar analysis.
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Auxiliary

On the other hand, the coupled system on y± particles should be taken
separately since all the terms appear to contribute at the same level

logY
(α)
+ = − log (1 + YQ) ? KQy

+ + log
(
1 + Y Q

)
? KQy
−

−
∑
α̇

log
(

1 + Y
(α̇)
0

)
?̌K 0y

Analytic structure and closure of TBA indicates dependence of Y -function
and identifies the contribution order O[µ], when perturbed in µ.

Anton Pribytok



Small twist

From kernel convolutions with constant densities it becomes possible to
obtain Ansätze for Y -functions, after which the TBA can be solved and
results in

Y{Q,Q} ≈ µ
2

[
x+
Q

x−Q

]L
Y

(α̇)
0 ≈ µ2

[
x+

0

x−0

]L
ẼQ = log

x−Q
x+
Q

.

The massive mirror energy ẼQ derives

ẼQ = log
x
(
u − i Qh

)
x
(
u + i Qh

) = 2 arcsinh


√

(p̃Q)
2

+ Q2

2h

 ,

At the level of Y -ansätze, it can be proven that all functions start to
contribute at O[µ2].
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One can now obtain the GSE at small µ and arbitrary L

E (µ, h, L) ≈ −µ2

+∞∑
Q=1

1

2π

+∞∫
−∞

dp̃Q2e−LẼQ +
1

2π

+∞∫
−∞

dp̃Q2e−LẼ0


= −µ

2

π

[
I +

8hL

4L2 − 1

] (1)

where the massive term I can be transformed into

I = L
∞∑
k=0

(−1)k4k+L Γ
(
k + L− 1

2

)
Γ
(
k + L + 1

2

)
Γ(k + 1)Γ(k + 2L + 1)

h2k+2Lζ(2k + 2L− 1)

One can find that the massless integral can be computed analytically for
L > 1

2 , whereas the massive part I becomes the single convergent sum for

Iconv : L > 1 , |h| ≤ 1

2
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Large circumference

For the case of large L and arbitrary µ the TBA solves, when Y ∼ e−LẼx

and provides

E (µ, h, L) ≈ − 4

π
sin2

(µ
2

)[
I +

8hL

4L2 − 1

]
.

Hence this solution nontrivially results in replacing twists factor

µ2 → 4 sin2
(µ

2

)
,

for massless and massive integrals. Clearly, it recovers µ� 1 case.
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Lüscher formalism

The finite-size effects are related to wrapping interactions that come from
the dynamics of the virtual particles (on finite volume).

[Arutyunov, Bajnok, Frolov, Janik,  Lukowski, Zamaklar ...]

From the perspective of finite-size corrections to GSE, it appears possible
to consider Lüscher formalism by introducing massless deformation and
twisting

E (µ, h, L) = −2
+∞∑
Q=1

∞∫
−∞

du

2π

dp̃Q

du
e−LẼQFQ

− n0

∫
|u|>2

du

2π

dp̃0

du
e−LẼ0F0 +O

[
e−2LẼx

]
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The Trx is over appropriate x = {Q/Q/0} 2-dim representations
X = X1 ⊗ X2 (1 boson and fermion ∈ Xi ). So the computation provides

E (µ, h, L) = − 4

π
sin2

(µ
2

) +∞∫
−∞

+∞∑
Q=1

dp̃Q e−LẼQ

+− 4

π
n0 sin2

(µ
2

) 8hL

4L2 − 1
+O

[
e−2LẼQ

]
Fx = Trxe

i(π+µ)F =
(
1− e−iµ

) (
1− e iµ

)
= 4 sin2

(µ
2

)
where F → Fx1 − Fx1 plays a role of the fermion number operator. After
recasting the massive integral, we find 1 to 1 agreement

E (µ, h, L) = − 4

π
sin2

(µ
2

)[
I +

8hL

4L2 − 1

]
+O

[
e−2LẼQ

]
.
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Lightcone AdS3× S3× T 4 sigma model
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AdS3 × S3 × T 4 Near-BMN (mixed)

S =

∫
dτ

J∫
0

dσL(x , ẋ) L = L(2) +
1

h
L(4) +

1

h2
L(6) + . . .

where the orders with odd field configuration are absent due to
perturbative properties of AdSn × Sn. [Sundin et. al.]

L(2) = L0 + Lm

where the terms describe massless and massive sectors

L0 = |∂iu1|2 + |∂iu2|2 + i χ̄ṙ
L∂−χ

ṙ
L + i χ̄ṙ

R∂+χ
ṙ
R

Lm = |∂i z̃ |2 − q̂2|z̃ |2 + |∂i ỹ |2 − q̂2|ỹ |2

+ i χ̄r
L∂−χ

r
L + i χ̄r

R∂+χ
r
R − q̂χ̄r

Lχ
r
R − q̂χ̄r

Rχ
r
L r = 1, 2
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AdS3 × S3 × T 4 Near-BMN GSE

The leading computation for the large J = L/h derives

EM =
2

γ

∑
k\{0}

(1− e2iπkµ̃) Ω(k)2

4π|k|K1

(
2πq̂|k|
γ

)
γq̂


= − 4

π
sin2

(µ
2

)√
q̂

2π

J
e−q̂ J +O

[
e−JJ −

3
2

]
Ω(z)2 = − γ2q̂2

4π2z2

EnBMN
T 4 = − µ2

πJ
− 4

π
sin2

(µ
2

)√
q̂

2π

J
e−q̂ J +O

[
e−JJ −

3
2

]

where for q̂ = 1 it reproduces the pure RR case.
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Mixed flux AdS3× S3× T 4
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Mixed flux AdS3 × S3 × S3 × S1

From the lightcone perspective, it is possible to construct twisted
superstring sigma models equipped with RR-NSNS flux. The fields become
charged under su(2)• and su(2)◦.

In the context of the AdS3 × S3 ×M4 lightcone superstring one can
consider boso-fermionic twisting in generic form

φk(τ, σ + J ) = e−iµ
B
k φk(τ, σ) and ψk,α(τ, σ + J ) = e−iµ

F
k,αψk,α(τ, σ)

with α = 1, 2 and J = L/h.

From the twisted AdS3 × S3 × S3 × S1, the dispersion relation can be
given as

E =
∞∑

n=−∞

√
2ρq(n + µ̃B)mB,i + ρ2(n + µ̃B)2 + m2

B,i

−
∞∑

n=−∞

√
2ρq(n + µ̃F )mF ,i + ρ2(n + µ̃F )2 + m2

F ,i

q̂2 + q2 = 1 , ρ = 2π/J
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Mixed flux GSE from lightcone

In general for N complex massless and massive bosons and fermions we
derive

ENB,F =

NB
0∑

i=1

(
|µ0,B,i |
J

−
µ2

0,B,i

2πJ
− π

3J

)
−

NF
0∑

i=1

(
|µ0,F ,i |
J

−
µ2

0,F ,i

2πJ
− π

3J

)

− 2q̂

π

+∞∑
w=1

[ NB∑
l=1

mB,l

w
K1 (JwmB,l q̂) cos

(
Jw mB,l

√
1− q̂2 + wµB,l

)

−
NF∑
n=1

mF ,n

w
K1 (JwmF ,n q̂) cos

(
Jw mF ,n

√
1− q̂2 + wµF ,n

)]
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Mixed flux GSE from lightcone

For the case of mixed flux, when M4 = T 4 there are two particles in
each sector, hence one obtains for the large J

ELC =
|µ1 − µ2|+ |µ1 + µ2| − 2µ2

J
− µ2

1

πJ

− 4

π
sin2

(µ
2

) √
q̂

2π

J
cos
(
J
√

1− q̂2
)
e−J q̂

By universal twisting for massless excitations (µ1,2 = µ), we acquire for
the mixed AdS3 GSE [Frolov, AP, Sfondrini ’23]

EMF
T 4 = − µ2

πJ
− 4

π
sin2

(µ
2

) √
q̂

2π

J
cos
(
J
√

1− q̂2
)
e−J q̂+O

[
J− 3

2 cos(qJ )e−J q̂
]
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Mixed flux GSE: TBA proposal

For this purpose we derive the mixed flux mirror energy in terms of mirror
momentum p̃ and bound state number Q

ẼQ =
1

h

√
p̃2 + q̂2Q2 + iq

Q

h

By making a proposal for the mixed flux TBA and recalling large L
behaviour, we find for the GSE

EMF
T 4 = −µ

2

2π

+∞∫
−∞

+∞∑
Q=1

dp̃Q(e−LẼQ + e−LẼQ )− n0µ
2

2π

+∞∫
−∞

dp̃ 0e−LẼ0

= − µ2

πJ
− µ2

π

√
q̂

2π

J
cos
(
J
√

1− q̂2
)
e−J q̂ + . . . ,

that is in full agreement with the AdS3 × S3 × T 4 lightcone computation
for large J .

Anton Pribytok



Conclusions

Proven TBA system closure and solvability for the twisted
AdS3 × S3 × T 4 with RR-flux

Derived GSE in µ, h, L

Developed generalised Lüscher formalism that consistently accounts
for massless modes

In large J = L/h the GSE EMTBA = ELC (Near-BMN)

Proposed AdS3 × S3 × T 4 mixed flux GSE from Mirror TBA, which
appears in full agreement with the AdS3 × S3 × S3 × S1 lightcone
derivation
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Further Directions

Twisted QSC construction and observables [in progress]

The full excited TBA (contour deformation)

Mixed flux AdS3 × S3 × T 4 TBA system

Twisted superstring sigma models

NLO TBA (all sectors) and Lüscher formalism

Twisted hybrid formalism for AdS3 and n-pt functions for (generic q)
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Thank You
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Bethe-Yang system
Left magnon equation

1 = e i p̃kR
N1∏
j=1
j 6=k

S11
sl (uk , uj)

N1̄∏
j=1

S̃11
sl (uk , uj)

2∏
α̇=1

N
(α)
0∏

j=1

S10
(
uk , u

(α̇)
j

) 2∏
α=1

N(α)
y∏

j=1

S1y
(
uk , y

(α)
)

S11
sl

(
uk , uj

)
=

x+
k − x−j

x−k − x+
j

1− 1

x−
k

x+
j

1− 1

x+
k
x−j

(
σ••kj

)−2
S̃11
sl

(
uk , uj

)
= e ipk

1− 1
x+
k
x+
j

1− 1

x−
k

x−j

1− 1

x−
k

x+
j

1− 1

x+
k
x−j

(
σ̃••kj

)−2

S10
(
uk , uj

)
= e−

i
2
pk e−ipj

1− x+
k xj

x−k − xj

(
σ•◦kj

)−2
S1y

(
uk , yj

)
= e−

i
2
pk

1− 1

x−
k

yj

1− 1
x+
k
yj

= e
i
2
pk

x−k −
1
yj

x+
k −

1
yj

.

which after fusion results in the left Q-bound state equation

1 =e i p̃aR
NL∏
b=1
b 6=a

SQaQb

sl (ua, ub)

NR∏
b=1

S̃QaQ̄b

sl (ua, ub)

×
2∏

α̇=1

N
(α)
0∏

j=1

SQa0
(
ua, x

(α̇)
j

) 2∏
α=1

N(α)
y∏

b=1

SQay
(
ua, y

(α)
b

)
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Kernels and Convolution

The kernels depend on the associated S-matrix

Kij(u, v) =
1

2πi

d

du
log Sij(u, v)

hence are identified by the scattering data.

Depending on the scattered sectors, the associated cut structure is also
reflected in an appropriate convolution bounds, i.e.

?↔
∫ +∞

−∞
du ?̂↔

∫ +2

−2
du ?̌↔

(∫ −2

−∞
+

∫ +∞

+2

)
du

The involved ?-left action for any domain defines

ρi ? Kij(v) ≡
∑
i

∫
du ρi (u)Kij(u, v)
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The massive mirror energy ẼQ derives

ẼQ = log
x
(
u − i Qh

)
x
(
u + i Qh

) = 2 arcsinh


√

(p̃Q)
2

+ Q2

2h

 ,

where the dependence is spanned by the Q-particle mirror momentum p̃Q
(real particles possess rapidity p̃(u), u ∈ R, whereas massive bound states
are on the u-plane with complex momentum and energy).

In the present framework, the Zhukovsky relation is implemented on
long-cut

x(u) =
1

2

(
u − i

√
4− u2

)
with Zhukovsky variable x and −2 > u > 2 for u ∈ R.

Anton Pribytok



AdS5 and AdS3 regimes
Large h, L is fixed

I(h� L, L) ≈ π

L2 − 1
h2 IAdS5(h� L, L) ≈ 3π

L4 − 5L2 + 4
h4

AdS3, h-regimes

I(h� 1, L� h) =

√
π

L
h2L I(h� 1, L� h) =

√
2π

h

L
e−

L
h

J = L/h, J is fixed

I(J � 1) ≈
√

2πe−J√
J IAdS5(J � 1) ≈

√
2πe−J√
J

I(J � 1) ≈ π
J 2 IAdS5(J � 1) ≈ 3π

J 4

Small h, massless modes contribute already at linear order

E (µ, L, h� 1) = − 4

π
sin2

(µ
2

)(
n0

4hL

4L2 − 1
+
√
π

Γ(L− 1
2 )

Γ(L)
ζ(2L− 1) h2L

)
,

whereas in AdS5 × S5 at O[µ2].
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AdS5 and AdS3 GSE

By considering GSE at distinct J regimes for AdS5 × S5 and

AdS3 × S3 × T 4

EAdS3 (J � 1) = −µ
2

π

(
n0 − 1

J
− π

J 2

)

EAdS3 (J � 1) = −µ
2

π

(
n0

J
−
√

2π

J
e−J

)
EAdS5 (J � 1) = −6µ2

J 4

EAdS5 (J � 1) = −2
µ2

π

√
2π√
J

e−J

important that at large J massless modes start to dominate in the

AdS3 × S3 × T 4 case.
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