Higher-Point Conformal Blocks From the Oscillator Formalism

New Perspectives in Conformal Field Theory and Gravity

Tobias Hössel 28th September 2023

Institute for Theoretical Physics Friedrich Schiller University Jena

1. Motivation

conformal block decomposition of CFT correlation functions

$$\langle \mathcal{O}_1(z_1)\mathcal{O}_2(z_2)\mathcal{O}_3(z_3)\mathcal{O}_4(z_4) \rangle = \sum_{\mathbb{h}} C_{12\mathbb{h}}C_{34\mathbb{h}}G_{\mathbb{h}}^{(4)}(z_1,\ldots,z_4)$$

splits model-dependent (conformal) data $\{\mathbb{h}, C_{ijk}\}$ from universal building blocks $G_{\mathbb{h}}^{(4)}$

• "universal" within a fixed setting: blocks depend on e.g.

- \blacktriangleright dimension d of base space
- ▶ d = 2: global vs. Virasoro blocks
- ▶ topology of base space (sphere, torus, ...)

Why should we care about (higher-point) blocks?

• conformal bootstrap program: consistency constrains on conformal data

- higher-point schemes?
- AdS/CFT-correspondence Maldacena, 1998
 - Global conformal blocks are dual to bulk geodesic Witten diagrams Witten, 1998; Hijano et al., 2016

2. Oscillator Representation Method for Global Blocks on the Sphere

- directly solve Ward identities + Casimir equations (Dolan and Osborn, 2001, 2004)
 - difficulty quickly increases with degree of blocks
- recurrence relation method (Zamolodchikov, 1984)
 - works fine order by order
 - challenging for finding closed form expressions

- shadow operator method (Ferrara and Parisi, 1972, Ferrara et al., 1972)
 - insert (shadow)projector into correlator

$$\Psi_{\mathbb{h}}(z_1,\ldots,z_4) = \langle \mathcal{O}_1(z_1)\mathcal{O}_2(z_2)\tilde{P}_{\mathbb{h}}\mathcal{O}_3(z_3)\mathcal{O}_4(z_4) \rangle$$

- gives linear combination of conformal block and shadow block
- conformal block obtained in an extra step
- oscillator representation method (Beşken, Datta, and Kraus, 2020a)
 - ▶ express projector as $P_{\mathbb{h}} = \int [d^2 u] |\bar{u}\rangle \langle u|$ in terms of generalized coherent states

$$G_{\mathbb{h}}^{(4)}(z_1,\ldots,z_4) = \langle \mathcal{O}_1(z_1)\mathcal{O}_2(z_2)P_{\mathbb{h}}\mathcal{O}_3(z_3)\mathcal{O}_4(z_4) \rangle$$

no shadow part!

Oscillator Representations of Verma Modules

• oscillator representation $L_n \mapsto \ell_n = u^{(1-n)}\partial_u + (1-n)\mathbb{h}u^{-n}, n = 0, \pm 1$ on weighted Bergman spaces

$$\mathcal{B}_{\mathbb{H}} := \left\{ f: \mathbb{D} \to \mathbb{C} | f \text{ holomorphic}, \int_{\mathbb{D}} [\mathrm{d}^2 u] \, |f(u)|^2 < \infty \right\}$$

• HW state $|h\rangle = 1$, descendant states $|h, n\rangle =$ monomials u^n

orthogonality relation

$$(u^m, u^n) = \frac{n!}{(2\mathbb{h})_n} \delta_{m,n} \tag{1}$$

• existence of reproducing kernel gives rise to resolution of one (Hall, 1999)

$$P_{\mathbb{h}} = \int [\mathrm{d}^2 u] |\bar{u}\rangle \langle u|$$

• four-point block

$$G_{\mathbb{h}}^{(4)} = \langle \mathcal{O}_1(z_1)\mathcal{O}_2(z_2)P_{\mathbb{h}}\mathcal{O}_3(z_3)\mathcal{O}_4(z_4) \rangle$$
$$= \int [\mathrm{d}^2 u] \underbrace{\langle 0|\mathcal{O}_1(z_1)\mathcal{O}_2(z_2)|\bar{u}\rangle}_{\chi_{\mathbb{h}}(z_1,z_2;\bar{u})} \underbrace{\langle u|\mathcal{O}_3(z_3)\mathcal{O}_4(z_4)|0\rangle}_{\psi_{\mathbb{h}}(z_3,z_4;u)}$$

• five-point block

$$G_{\mathbb{h}_{1},\mathbb{h}_{2}}^{(5)} = \langle \mathcal{O}_{1}(z_{1})\mathcal{O}_{2}(z_{2})P_{\mathbb{h}_{1}}\mathcal{O}_{3}(z_{3})P_{\mathbb{h}_{1}}\mathcal{O}_{4}(z_{4})\mathcal{O}_{5}(z_{5})\rangle$$

$$= \int [d^{2}u_{1}] \int [d^{2}u_{2}] \underbrace{\langle 0| \mathcal{O}_{1}(z_{1})\mathcal{O}_{2}(z_{2}) | \bar{u}_{1}\rangle}_{\chi_{\mathbb{h}_{1}}(z_{1},z_{2};\bar{u}_{1})}$$

$$\cdot \underbrace{\langle u_{1}| \mathcal{O}_{3}(z_{3}) | \bar{u}_{2}\rangle}_{\Omega_{\mathbb{h}_{1},\mathbb{h}_{2}}(z_{3};u_{1},\bar{u}_{2})} \underbrace{\langle u_{2}| \mathcal{O}_{4}(z_{4})\mathcal{O}_{5}(z_{5}) | 0\rangle}_{\psi_{\mathbb{h}_{2}}(z_{4},z_{5};u_{2})}$$

• *n*-point (comb) block: same shape with $(n-3) \Omega$'s

• wavefunctions allow for a diagrammatic interpretation

 $= \mathcal{L}^{(4)} \mathfrak{z}^{\mathbb{h}_1} \mathfrak{z}^{\mathbb{h}_1} \mathfrak{z}^{\mathbb{h}_1} (\mathbb{h}_1 + h_2 - h_1, \mathbb{h}_1 - h_3 + h_4; 2\mathbb{h}_1; \mathfrak{z})$

• computation of the five-point block

• computation of five-point block (alternative):

Gluing the Blocks: n-Point Blocks

• computation of the *n*-point comb block:

 \rightarrow matches (Rosenhaus, 2019)

• What about different channels? E.g. six-point star channel

▶ construction works for $h_2 \ge h_1 + h_3$

3. Generalizations of the Method

Directions of Generalization

• torus conformal blocks (Hollweck, 2022)

- Virasoro conformal blocks (Beşken, Datta, and Kraus, 2020b)
 - infinite series of weighted Bargman-Segal spaces
 - ▶ solving for $\psi_{\mathbb{h}}$ and $\chi_{\mathbb{h}}$ much harder
 - semi-classical limit!
- bms-blocks in Carrollian CFTs (Ammon et al., 2021)
- conformal blocks in higher dimensions (e.g. d = 4)

(based on Calixto and Perez-Romero, 2010, 2011, 2014)

• oscillator variable becomes matrix valued

$$u \in \mathbb{D} \quad \to \quad U \in \mathbb{D}_4 = \{ U \in \mathbb{C}^{2 \times 2} : 1 - U^{\dagger}U > 0 \}$$

• orthonormal eigenbasis generalized Wigner-D-matrices

$$\varphi_n(u) = u^n \quad \to \quad \varphi_{q_a,q_b}^{j,m}(U) \sim \det(U)^m \mathcal{D}_{q_a,q_b}^j(U)$$

• projector from coherent states

$$P_{\Delta} = \int [\mathrm{d}U] |U^{\dagger}\rangle \langle U|$$

unitary oscillator representation \checkmark

• next step: compute wavefunctions

$$\Psi_{\Delta}(x^{\mu}, y^{\mu}; U), \quad X_{\Delta}(x^{\mu}, y^{\mu}; U^{\dagger}), \quad \Omega_{\Delta}(x^{\mu}; U_1, U_2^{\dagger})$$

4. Conclusion and Outlook

• take-home message: The oscillator formalism provides an efficient method for the computation of conformal blocks.

- intuitive diagrammatic formulation
- applicable in different regimes of CFT
- future directions
 - continue investigation of different channels
 - derive closed form solutions for higher-point blocks in d = 4
 - implement spin in d = 4

Thank you for your attention!

5. References

Maldacena, Juan Martin (1998). "The Large N limit of superconformal field theories and supergravity". In: Adv. Theor. Math. Phys. 2, pp. 231–252. DOI: 10.4310/ATMP.1998.v2.n2.a1. arXiv: hep-th/9711200.

Witten, Edward (1998). "Anti-de Sitter space and holography". In: Adv. Theor. Math. Phys. 2, pp. 253-291. DOI: 10.4310/ATMP.1998.v2.n2.a2. arXiv: hep-th/9802150.

Hijano, Eliot et al. (2016). "Witten Diagrams Revisited: The AdS Geometry of Conformal Blocks". In: JHEP 01, p. 146. DOI: 10.1007/JHEP01(2016)146. arXiv: 1508.00501 [hep-th].

Dolan, F. A. and H. Osborn (2001). "Conformal four point functions and the operator product expansion". In: *Nucl. Phys. B* 599, pp. 459–496. DOI: 10.1016/S0550-3213(01)00013-X. arXiv: hep-th/0011040.

(2004). "Conformal partial waves and the operator product expansion". In: Nucl. Phys. B 678, pp. 491–507. DOI: 10.1016/j.nuclphysb.2003.11.016. arXiv: hep-th/0309180.

Zamolodchikov, Al. B. (1984). "Conformal symmetry in two dimensions: an explicit recurrence formula for the conformal partial wave amplitude". In: Communications in Mathematical Physics 96.3, pp. 419 –422. DOI: Ferrara, S. and G. Parisi (1972). "Conformal covariant correlation functions". In: Nucl. Phys. B 42, pp. 281–290. DOI: 10.1016/0550 - 3213(72)90480 - 4.Ferrara, S. et al. (1972). "The shadow operator formalism for conformal algebra. Vacuum expectation values and operator products". In: Lett. Nuovo Cim. 4S2, pp. 115-120. DOI: 10.1007/BF02907130. Beşken, Mert, Shouvik Datta, and Per Kraus (2020a). "Quantum thermalization and Virasoro symmetry". In: J. Stat. Mech. 2006, p. 063104. DOI: 10.1088/1742-5468/ab900b. arXiv: 1907.06661 [hep-th]. Hall, Brian C. (1999). Holomorphic Methods in Mathematical Physics. DOI: 10.48550/ARXIV.QUANT-PH/9912054. URL: https://arxiv.org/abs/quant-ph/9912054. Rosenhaus, Vladimir (2019). "Multipoint Conformal Blocks in the Comb Channel". In: JHEP 02, p. 142. DOI: 10.1007/JHEP02(2019)142. arXiv: Hollweck, Jakob (2022). "Torus Conformal Blocks of 2D Conformal Field Theories". MA thesis. Friedrich Schiller University Jena.

- Beşken, Mert, Shouvik Datta, and Per Kraus (2020b). "Semi-classical Virasoro blocks: proof of exponentiation". In: JHEP 01, p. 109. DOI: 10.1007/JHEP01(2020)109. arXiv: 1910.04169 [hep-th].
- Ammon, Martin et al. (2021). "Semi-classical BMS-blocks from the oscillator construction". In: JHEP 04, p. 155. DOI: 10.1007/JHEP04(2021)155. arXiv: 2012.09173 [hep-th].
 - Calixto, M. and E. Perez-Romero (Feb. 2010). "Extended MacMahon-Schwinger's Master Theorem and Conformal Wavelets in Complex Minkowski Space". In: arXiv e-prints, arXiv:1002.3498, arXiv:1002.3498. arXiv: 1002.3498 [math-ph].
- (2011). "Conformal Spinning Quantum Particles in Complex Minkowski Space as Constrained Nonlinear Sigma Models in U(2,2) and Born's Reciprocity". In: Int. J. Geom. Meth. Mod. Phys. 8, pp. 587–619. DOI: 10.1142/S0219887811005282. arXiv: 1006.5958 [hep-th].
- (2014). "On the oscillator realization of conformal U(2, 2) quantum particles and their particle-hole coherent states". In: J. Math. Phys. 55,
 - p. 081706. DOI: 10.1063/1.4892107. arXiv: 1405.6600 [math-ph].

6. Backup Slides

• second-order Casimir of $\mathfrak{sl}(2,\mathbb{R})$

$$C_2 = -L_0^2 + \frac{1}{2} \{L_{-1}, L_1\}$$

• eigenvalue equation with projector

$$C_2 P_{\mathbb{h}} = P_{\mathbb{h}} C_2 = \mathbb{h} (1 - \mathbb{h}) P_{\mathbb{h}} .$$
⁽²⁾

• multi-point Casimir operator

$$\begin{aligned} \mathcal{C}_{2}^{(i_{1},\dots,i_{m})} &= -\left(\mathcal{L}_{0}^{(i_{1})} + \dots + \mathcal{L}_{0}^{(i_{m})}\right)^{2} \\ &+ \frac{1}{2}\left\{\mathcal{L}_{-1}^{(i_{1})} + \dots + \mathcal{L}_{-1}^{(i_{m})}, \mathcal{L}_{1}^{(i_{1})} + \dots + \mathcal{L}_{1}^{(i_{m})}\right\} \end{aligned}$$

• comb channel blocks

$$\begin{pmatrix} \mathcal{C}_2^{(3,4,5,6)} + \mathbb{h}_1(\mathbb{h}_1 - 1) \end{pmatrix} G^{(6)}_{\mathbb{h}_1 \mathbb{h}_2 \mathbb{h}_3}(z_1, \dots, z_6) = 0, \\ \begin{pmatrix} \mathcal{C}_2^{(4,5,6)} + \mathbb{h}_2(\mathbb{h}_2 - 1) \end{pmatrix} G^{(6)}_{\mathbb{h}_1 \mathbb{h}_2 \mathbb{h}_3}(z_1, \dots, z_6) = 0, \\ \begin{pmatrix} \mathcal{C}_2^{(5,6)} + \mathbb{h}_3(\mathbb{h}_3 - 1) \end{pmatrix} G^{(6)}_{\mathbb{h}_1 \mathbb{h}_2 \mathbb{h}_3}(z_1, \dots, z_6) = 0 \end{cases}$$

• star channel blocks

$$\begin{pmatrix} \mathcal{C}_2^{(1,2)} + \mathbb{h}_1(\mathbb{h}_1 - 1) \end{pmatrix} S_{\mathbb{h}_1 \mathbb{h}_2 \mathbb{h}_3}^{(6)}(z_1, \dots, z_6) = 0, \\ \begin{pmatrix} \mathcal{C}_2^{(3,4)} + \mathbb{h}_2(\mathbb{h}_2 - 1) \end{pmatrix} S_{\mathbb{h}_1 \mathbb{h}_2 \mathbb{h}_3}^{(6)}(z_1, \dots, z_6) = 0, \\ \begin{pmatrix} \mathcal{C}_2^{(5,6)} + \mathbb{h}_3(\mathbb{h}_3 - 1) \end{pmatrix} S_{\mathbb{h}_1 \mathbb{h}_2 \mathbb{h}_3}^{(6)}(z_1, \dots, z_6) = 0 \end{cases}$$

• Casimir equations for general *n*-point comb block

$$\left(\mathcal{C}_{2}^{(3,4,5,\ldots,n)} + \mathbb{h}_{1}(\mathbb{h}_{1}-1) \right) G_{\mathbb{h}_{1}\ldots\mathbb{h}_{n-3}}^{(n)}(z_{1},\ldots,z_{n}) = 0,$$

$$\left(\mathcal{C}_{2}^{(4,5,\ldots,n)} + \mathbb{h}_{2}(\mathbb{h}_{2}-1) \right) G_{\mathbb{h}_{1}\ldots\mathbb{h}_{n-3}}^{(n)}(z_{1},\ldots,z_{n}) = 0,$$

$$\vdots$$

$$\left(\mathcal{C}_{2}^{(n-1,n)} + \mathbb{h}_{n-3}(\mathbb{h}_{n-3}-1) \right) G_{\mathbb{h}_{1}\ldots\mathbb{h}_{n-3}}^{(n)}(z_{1},\ldots,z_{6}) = 0.$$

• (ordinary) hypergeometric function as power series

$$_{2}F_{1}(a,b,c;z) = \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!}$$

 \rightarrow solution to the differential equation

$$\left[z(1-z)\partial_z^2 + \left[c - (a+b+1)z\right]\partial_z - ab\right]F(a,b,c;z) = 0$$

• generalized hypergeometric function

$${}_{p}F_{q}\begin{pmatrix}a_{1},\ldots,a_{p}\\b_{1},\ldots,b_{q};z\end{pmatrix} = \sum_{k=0}^{\infty}\frac{(a_{1})_{k}\ldots(a_{p})_{k}}{(b_{1})_{k}\ldots(b_{q})_{k}}\frac{z^{k}}{k!}$$

• definition as power series

$$F_{K}\begin{bmatrix}a_{1}, b_{1}, \dots, b_{n-4}, a_{2} \\ c_{1}, \dots, c_{n-3}\end{bmatrix}$$

$$= \sum_{k_{1}, \dots, k_{n-3}}^{\infty} \frac{(a_{1})_{k_{1}}(b_{1})_{k_{1}+k_{2}}(b_{2})_{k_{2}+k_{3}}\dots(b_{n-4})_{k_{n-4}+k_{n-3}}(a_{2})_{k_{n-3}}}{(c_{1})_{k_{1}}\dots(c_{n-3})_{k_{n-3}}} \cdot \frac{z_{1}^{k_{1}}}{k_{1}!}\dots\frac{z_{n-3}^{k_{n-3}}}{k_{n-3}!}$$

• satisfies splitting equations

Rosenhaus, 2019

• definition as power series

$$F_D^{(3)}(a, b_1, b_2, b_3, c; z_1, z_2, z_3) = \sum_{j_1, j_2, j_3=0}^{\infty} \frac{(a)_{j_1+j_2+j_3}(b_1)_{j_1}(b_2)_{j_2}(b_3)_{j_3}}{(c)_{j_1+j_2+j_3}} \frac{z_1^{j_1}}{j_1!} \frac{z_2^{j_2}}{j_2!} \frac{z_3^{j_3}}{j_3!}$$

• integral representation

$$F_D^{(3)}(a, b_1, b_2, b_3, c; z_1, z_2, z_3) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(c-a)}$$
$$\cdot \int_0^1 \mathrm{d}t \, t^{a-1} (1-t)^{c-a-1} (1-z_1 t)^{-b_1} (1-z_2 t)^{-b_2} (1-z_3 t)^{-b_3}$$