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Introduction

One interesting thing about supersymmetric field theories is the
presence of protected subsectors which are sensitive to
topological and holomorphic structures on spacetime.

These subsectors are extracted by twisting: Let Q ∈ godd with
[Q,Q] = 0 and take invariants with respect to the odd abelian
algebra spanned by Q.

The twisted theories have many desirable properties:
— They are topological-holomorphic field theories (and thus

much simpler than the full theory).
— They can typically be formulated in terms of geometric

moduli problems on spacetime.
— Good behavior under quantization, nice results on

symmetry enhancements...
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Two natural questions arise:
1. How can we compute twists efficiently?
2. What can we learn from the twists about the full theory?

I will make the case that the two problems should be addressed
simultaneously.

Calculating twists is difficult. Why?

The supersymmetry transformations act in a complicated way
on the fields. In particular the action is often only on-shell
(there is only an L∞ module structure).

In superspace, the supersymmetries act geometric.
Twisting just means taking invariants in some odd

direction.
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Plan

I. How to produce universal superspace descriptions which
are compatible with twisting?

−→ Pure spinor superfields

II. What can we learn about the full theory and its twists?

−→ Today: Eleven-dimensional supergravity



I. Pure spinor superfields and twisting



The pure spinor superfield formalism provides universal
superfield descriptions of multiplets.

Let p = p0 n t be a super Poincaré algebra. We call t the
supertranslation algebra and denote the associated super Lie
group by T . (T ∼ superspace)

There are two actions on the free superfield C∞(T )

L ,R : p −→ Vect(T )

given by the usual vector fields

Qα = ∂

∂θα
+ γµαβθ

β ∂

∂xµ
Dα = ∂

∂θα
− γµαβθ

β ∂

∂xµ
.

Think of the superspace T as a supermanifold equipped with a
distribution.
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The nilpotence variety

Y = {Q ∈ t1|[Q,Q] = 0}

is the moduli space of twists for theories with p-symmetry.

The pure spinor superfield formalism constructs multiplets from
OY -modules.

Modp0
OY

Multp

Modp0
C•(t)

A•
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The pure spinor construction is compatible with
twisting.

Choose Q ∈ Y . We can twist the multiplet by deforming the
differential.

On the other hand, we can twist the input data for the
formalism.

p −→ pQ = H•(p, [Q,−])

pQ is the residual symmetry algebra and has a new nilpotence
variety YQ controlling further twists.

Both procedures are compatible [Saberi–Williams]:

A•(OY )Q ∼= A•(OYQ
)
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II. (Twisted) eleven-dimensional supergravity



Eleven-dimensional supergravity has two distinct twists.

Full (untwisted) theory

Minimal twist
U(5) y C5 × R

Maximal twist
G2 × SU(2) y R7 × C2

The maximal twist is Poisson–Chern–Simons theory.(
Ω0,•(C2)⊗ Ω•(R7) , ∂̄C2 + dR7 , {−,−}PB

)
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Poisson–Chern–Simons theory

Let X be a Calabi–Yau 2-fold. Think of the complex structure
as an involutive distribution. Recall that the de Rham
differential splits as ddR = ∂̄ + ∂.

Poisson–Chern-Simons theory on X ×M is modeled by

(Ω0,•(X) , ∂̄ , {−,−}PB)⊗ (Ω•(M),ddR),

where the Poisson bracket is constructed by

{α, β}PB = π(∂α ∧ ∂β).

We can think about Poisson–Chern–Simons theory as
modeling certain deformations of the complex structure, i.e.

of a distribution.
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Back to superspace
In eleven dimensions, we have three different superspaces:

p T, pQmin  TQmin , pQmax  TQmax

All three are equipped with distributions spanned by odd left
invariant vector fields. Except for the maximal twist, these are

non-involutive.

Consider differential forms (Ω•(T ) , ddR) ∼ C[x, θ,dθ,dx].

In a left-invariant basis λ = dθ and v = dx+ λθ:

ddR = λαγµαβλ
β ∂

∂vµ︸ ︷︷ ︸
γ

+λα
(
∂

∂θα
− θβγµαβ

∂

∂xµ

)
︸ ︷︷ ︸

∂̄

+ vµ
∂

∂xµ︸ ︷︷ ︸
∂

The differential γ reflects the non-involutivness of the
distribution.
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Taking cohomology with respect to γ gives the pure spinor
multiplet A•(OY ) = H0(Ω•(T ), γ).

There is a generalization of Poisson–Chern–Simons
constructing interactions on A•(OY ).

Applying this procedure in eleven-dimensions constructs:

— Poisson–Chern–Simons theory on R7 × C2 from TQmax .

— A quartic action functional for the minimal twist on C5×R
from TQmin .

— Cederwall’s quartic action of eleven-dimensional
supergravity in the pure spinor formalism from T .
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Thank you!


