Gravitational Waves from Dark Phase Transitions at Strong Coupling

Nicklas Ramberg nramberg@uni-mainz.de

September 27, 2023

AdS/CFT & Improved Holographic QCD IhQCD

Strategy: Use Holography and Lattice Data for theoretical control and QCD-Like Theory resemblence

CFT-QFT	String/Gravity	0.6
\mathcal{Z}_{CFT}	\mathcal{Z}_{G}	
W _{CFT}	$-S_{OS}$	0.3 • Blue $\frac{\rho}{T^4 N_c^2}$
Temperature T	T _h	0.2 • Red $\frac{35}{1^3 Nc^2}$
Entropy S	S _{BH}	0.1
Large-N ("QCD")	GR in AdS_{d+1}	0.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
		$\frac{T}{T}$

$$S_{5} = -M_{p}^{3}N_{c}^{2}\int d^{5}x\sqrt{g}(R - \frac{4}{3}(\partial\Phi)^{2} + V(\Phi)) + 2M_{p}^{3}\int_{\partial\mathcal{M}} d^{4}x\sqrt{h}\mathcal{K}$$

$$JG | U$$

Regular BH Solution

$$T_h = \frac{|\dot{f}(\lambda_h)|}{4\pi} = T_{AdS}$$

BH Area Law

$$S = 4\pi M_p^3 N_c^2 V_3 b(\lambda_h)^3$$

Free energy

$$\beta \Delta \mathcal{F} = (\mathcal{S}_{BH}^{\epsilon} - \mathcal{S}_{TG}^{\epsilon})/V_3$$

Confinement (HP) Phase Transition & Effective Action I

Big BH	Small BH	TG	
Deconfined	Saddle Point	Confined	

Free energy Landscape approach Field/Metric Configurations

 $T \neq T_h$

Conical singularity

Regularize with Spherical Cap

$$V_{ ext{eff}}(\lambda_h,T) = \mathcal{F}(\lambda_h) - 4\pi M_p^3 N_c^2 b(\lambda_h)^3 \left(1 - M_p^3 N_c^2 b(\lambda_h)^3 N_c^2 h(\lambda_h)^3
ight)^3
ight)^2$$

 λ_h

Confinement (HP) Phase Transition & Effective Action II

Kinetic Term Normalization

We vary $c \rightarrow \frac{1}{3} - 3$, Moderate dependence on GW spectrum Thermal Tunneling effective action O(3) symmetric bounce

$$S_{eff} = \frac{4\pi}{T} \int d\rho \, \rho^2 \left[c \frac{N_c^2}{16\pi^2} (\partial_\rho \lambda_h(\rho))^2 + V_{\text{eff}}(\lambda_h(\rho), T) \right]$$

 $c \frac{N_c^2}{16\pi^2}$

Nucleation Rate for Thermal Tunneling

$$\Gamma = T^4 \left(\frac{\mathcal{S}_B}{2\pi}\right)^{3/2} e^{-\mathcal{S}_B}$$

Percolation: $\mathcal{P}(true) \simeq \mathcal{P}(false)$ (End of PT! GW Emission)

	α	$\beta/H(v_w=1)$	$\beta/H(0.1)$	β/H (0.01)	IC	1.1
$T_c = 50 \mathrm{MeV}$	0.343	9.0×10^{4}	$8.6 imes10^4$	$8.2 imes 10^4$	JO	
$100{ m GeV}$	0.343	$6.8 imes10^4$	$6.4 imes 10^4$	$6.1 imes 10^4$	E -	১৫৫

Gravitational Wave Spectra SU(3) "The Money Plot"

GW spectra for SU(3) at different critical temperatures

3.5

Employ steady state approach like Bigazzi 2104.12817

$$\Delta P_{\textit{fric}}^{\textit{tot}} = 0 = \frac{F_{\textit{fric}}}{A} + \Delta P_{\textit{bubble}}$$

 $F_{fric} \sim F_{drag}$, F_{drag} is the drag force of an external probe quark traversing stationary in the plasma. Calculabel with AdS/CFT

From Dewolfe 2013

Access to the pressures in deconfined phase from the lattice fit.

Finally for the wall velocity we obtain so far

$$v_w = 0.07 \pm 0.03$$

• • • • • • • • • • • •

Kinetic Term Computation

Bulk Viscosity $\zeta \sim$ (Breaking of scale symmetry) \times (mean free path) \times (energy momentum density).

From Dewolfe 2013

