Gravitational waves from QCD-triggered conformal symmetry breaking

Daniel Schmitt

Institute for Theoretical Physics, Goethe University Frankfurt dschmitt@itp.uni-frankfurt.de

Collaborators: L. Sagunski, P. Schicho Based on: PRD 107, 123512 (2023) [arXiv:2302.02450]

GOET UNIVERSITÄT FRANKFURT AM MAIN

Standard Model (SM): QCD + electroweak (EW) transition separated

¹Kajantie et al. [1996]; Aoki et al. [2006]

Crossover transitions¹: no gravitational wave (GW) emission

Scale-invariant SM extensions: EW transition delayed²

Possible outcome: strong first-order QCD transition

²Iso, Serpico, Shimada [2017]; von Harling, Servant [2017]

1. The Supercooled Universe

Classically Conformal (CC) Models

- Two main principles:

 - 2. Impose scale invariance at tree level³

1. Extend SM by additional gauge symmetry with scalar field Φ (e.g. $U(1)_{R-I}$)

Classically Conformal (CC) Models

- Two main principles:

 - 2. Impose scale invariance at tree level³

$$V(H, \Phi) = \lambda_{\Phi} \Phi^4 + \lambda H^4 - \lambda_p \Phi^2 H^2$$

In replaced by portal coupling: $-\mu^2 H^2 \rightarrow -\lambda_p \Phi^2 H^2$

Higgs mass term

1. Extend SM by additional gauge symmetry with scalar field Φ (e.g. $U(1)_{R-I}$)

Symmetry Breaking Pattern

Conformal symmetry broken radiatively

$$\langle \Phi \rangle = v_{\Phi} \quad \rightarrow \quad \mu_{H}^{2} = \lambda_{p} v_{\Phi}^{2}$$

Higgs mass generated dynamically

Conformal Symmetry Breaking

Flat potential around origin

Thermal barrier remains until $T \rightarrow 0$

Universe trapped in false vacuum

Possible Supercooling⁴ to $T_p \ll T_{\rm EW}$

⁴e.g. Marzo et al. [2018]; Ellis et al. [2020]; Kierkla et al. [2022]

T = 0 $V_0(\Phi) + V_1(\Phi)$

 $\Phi \ll v_{\Phi}$

Supercooling and the QCD Transition

EWPT can be supercooled to QCD scale

Quarks remain massless

GOETHE UNIVERSI FRANKFURT AM

Supercooling and the QCD Transition

EWPT can be supercooled to QCD scale

Quarks remain massless

First-order chiral quark-hadron transition⁵ $\langle q\bar{q}\rangle \neq 0$

⁵Pisarski, Wilczek [1984]; Brown, Butler, Chen et al. [1990]

GOETHE UNIVERS FRANKFURT AM

Combined QCD - EW Phase Transition

Destabilises Higgs potential inside bubble⁶

⁶Iso, Serpico, Shimada [2017]; von Harling, Servant [2017]

$V(H) = \lambda_H H^4 + y_q \langle q\bar{q} \rangle H$

Supercool Exit

QCD-triggered EWSB breaks scale invariance $V_{\text{QCD}}(\Phi) = \lambda_p \langle H \rangle_{\text{QCD}}^2 \Phi^2$

Supercool Exit

QCD-triggered EWSB breaks scale invariance $V_{QCD}(\Phi) = \lambda_p \langle H \rangle_{QCD}^2 \Phi^2$

 Φ

Viable Parameter Space

Figure: Kierkla, Karam, Świeżewska [2022]

Viable Parameter Space

Figure: Kierkla, Karam, Świeżewska [2022]

Viable Parameter Space

Figure: Kierkla, Karam, Świeżewska [2022]

2. Supercooled QCD Phase Transition

Our Setup

Input: temperature of thermal inflation T_i

$$3M_{\rm Pl}^2 H^2 \simeq \Delta V_{\rm CC\,SM} = \frac{\pi^2}{30} g_\star T_i^4$$

Compute transition dynamics via effective QCD models⁷

Gravitational Waves from First-Order PTs

Gravitational Waves from First-Order PTs

Transition strength α

$$\alpha = \frac{\Delta V(\Phi)}{\rho_{\rm rad}(T_{\rm QCD})} \propto \left(\frac{T_i}{T_{\rm QCD}}\right)^4 \gg 1$$

BSM physics

Gravitational Waves from First-Order PTs

1

Transition strength α

$$\alpha = \frac{\Delta V(\Phi)}{\rho_{\rm rad}(T_{\rm QCD})} \propto \left(\frac{T_i}{T_{\rm QCD}}\right)^4 \gg 1$$

BSM physics

Inverse timescale β

Nucleation of hadronic bubbles

Nambu – Jona-Lasinio (NJL) Model

• Quark-based effective theory⁸

$$\mathscr{L} = \sum_{i} \bar{q}_{i} \left(i \mathscr{O} - m_{i} \right) \mathcal{O}$$

⁸Nambu, Jona-Lasinio [1961]; Klevansky [1996]; Kunihiro [1990]

• Fit model parameters to recover properties of QCD — Take chiral limit $m_i \rightarrow 0$

What about gluons?

Quark confinement

Diverging free energy

What about gluons?

• Fundamental traced Polyakov loop⁹ ℓ

$$\mathscr{E}(\mathbf{x}) = \frac{1}{N_c} \operatorname{Tr}_c \mathbf{L} = \exp\left(-\frac{\beta F_q(r)}{N_c}\right) ,$$

Quark confinement

where
$$\mathbf{L} = \mathscr{P} \exp\left[ig_{s}\int_{0}^{\beta=1/T} d\tau A_{4}(\mathbf{x},\tau)\right]_{iA_{0}}$$

Diverging free energy

⁹Fukushima [2004]; Fukushima, Skokov [2017]

What about gluons?

• Fundamental traced Polyakov loop⁹ ℓ

$$\mathscr{E}(\mathbf{x}) = \frac{1}{N_c} \operatorname{Tr}_c \mathbf{L} = \exp\left(-\beta F_q(r)\right) ,$$

- Thermodynamics fitted against lattice data
 - ----- Pure Yang-Mills: Polyakov loop extended NJL (PNJL) model
 - -----> QCD: Improved PNJL model¹⁰

where
$$\mathbf{L} = \mathscr{P} \exp\left[ig_s \int_0^{\beta=1/T} d\tau A_4(\mathbf{x}, \tau)\right]_{iA_0}$$

⁹Fukushima [2004]; Fukushima, Skokov [2017] ¹⁰Haas, Stiele, Braun et al. [2013]

Critical Temperature

Nucleation Temperature

One hadronic bubble nucleated per Hubble patch

Percolation Temperature

Percolation Temperature

Percolation temperature decreases with increasing amount of supercooling

Gravitational Wave Amplitude

GOETH FRANKFURT AM

Observational Prospects

17

Classically scale-invariant SM extensions well motivated BSM scenario

Natural outcome: Universe is supercooled down to QCD scale

QCD can trigger the end of thermal inflation

Resulting GW amplitude grows with amount of supercooling

Backup Slides

GWs - Frequency Dependence

 $f_0 \propto \beta \frac{a_{\star}}{a_0} \propto \frac{\beta}{H_{\star}} H_{\star} \frac{a_{\star}}{a_0} \propto \frac{\beta}{H_{\star}} T_i$

Large T_i : inverse timescale drops faster than increase in T_i

Frequency decreases again

Temperature Limits

 $\Delta V = P_{1 \to 1}$

 $T_{i,\min}$

Minimum Temperature: Consider leading order friction on bubble wall

$$\propto \sum_{i} \Delta m_{i}^{2} T_{\text{QCD}}^{2}$$

$$\downarrow i = \{t, W^{\pm}, Z\}$$

$$= \mathcal{O}(1) \operatorname{GeV}$$

20

Temperature Limits

Maximum Temperature: Consider volume trapped in false vacuum

$$\frac{1}{V_{\text{false}}} \frac{dV_{\text{false}}}{dt} = H(T) \left(3 + T\frac{dI(T)}{dT}\right) < 0$$

$$T_{i,\max} = \mathcal{O}(10^8) \,\mathrm{GeV}$$

Bounce Action

Completing the Phase Transition

Probability to remain in false vacuum

$$P = \exp\left[-I(T)\right]$$

Percolation temperature¹¹

$$I(T_p) = 0.34$$

¹¹Ellis, Lewicki, No [2018]

Bounce Action

Solve equation of motion

$$\frac{d^2\sigma}{dr^2} + \frac{2}{r}\frac{d\sigma}{dr} - \frac{1}{2}\frac{\partial\log Z_{\sigma}}{\partial\sigma}\left(\frac{d\sigma}{dr}\right)^2 = Z_{\sigma}\frac{dV_{\text{eff}}(\sigma,\ell,T)}{d\sigma}$$

Compute 3D bounce action numerically

$$S_3 = 4\pi \int dr r^2 \left[\frac{Z_{\sigma}^{-1}}{2} \left(\frac{d\sigma}{dr} \right)^2 + V_{\text{eff}}(\sigma, \ell, T) \right] \qquad Z_{\sigma}^{-1}: \text{Wave function renormalization}$$

NJL Effective Potential

$$V_{\rm eff}(\sigma, T) = V_0$$

$V_0(\sigma) + V_1(\sigma) + V_T(\sigma, T)$

Transition Timescale - 4D Cutoff

Cutoff Scheme Dependence

GOETH UNIVER FRANKFURT AM MAIN

