

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Investigating the Higgs selfcouplings through HHH production

Panagiotis Stylianou

based on work in collaboration with Georg Weiglein

DESY Theory Workshop 2023 27 September 2023

Introduction: the Higgs potential

 Crucial questions about Electroweak Symmetry Breaking: What is the form of the Higgs potential?

SM Potential:
$$V(\Phi) = \lambda (\Phi^{\dagger} \Phi)^2 - \mu^2 \Phi^{\dagger} \Phi$$

 $\supset -\lambda v H^3 - \frac{\lambda}{4} H^4$
BSM theories \rightarrow more complicated shapes

Very challenging experimentally

requires trilinear and quartic Higgs self-couplings

Trilinear Higgs coupling: experimental status

• Experimental bounds on signal strength from HH production: $\mu_{HH} < 2.4$

Triple Higgs production

- Additional source of information \rightarrow HHH production Dependence on both trilinear κ_3 and quartic κ_4 $H = \frac{\kappa_3}{H}$ $H = \frac{\kappa_4}{H}$ $H = \frac{\kappa_4}{H}$
- Is it possible to obtain bounds on κ_3 and κ_4 from HHH production beyond theoretical bounds from perturbative unitarity?
- How big can deviations in κ_4 be in BSM theories from SM value (= 1)
- Is there potential to improve κ_3 constraints from HH production?

Perturbative unitarity and Higgs couplings

- Process relevant for κ_3 , κ_4 is $HH \rightarrow HH$ scattering (see also [Liu et al `18])
- Jacob-Wick expansion allows to extract partial waves

DESY. Panagiotis Stylianou | DESY Theory Workshop 2023 | 27/09/23

 κ_3

Extension of SM potential by operators

Contributions to κ_3 , κ_4 :

Extension of SM potential by operators

DESY. Panagiotis Stylianou | DESY Theory Workshop 2023 | 27/09/23

 κ_3

BSM example: 2HDM

- Consider the 2HDM as an example
- Prediction for κ_3 up to two-loop level: [Bahl, Braathen, Weiglein 22]

Model example: 2HDM - trilinear vs quartic

- Same benchmark Point of [Bahl, Braathen, Weiglein 22] \rightarrow cross-check κ_3 result
- Expectedly deviations in κ_3 induce sizeable deviations in κ_4

DESY. Panagiotis Stylianou | DESY Theory Workshop 2023 | 27/09/23

 $\kappa_i =$

 $i \in \{3H, 4H\}$

Prospects for the HL-LHC

• Small rates at LHC

Need dominant production & decays

gluon fusion

$$BR(H \to b\bar{b}) = 0.584$$

• <u>BRs</u>: $BR(H \to \tau^+ \tau^-) = 6.627 \times 10^{-2}$

 $BR(H \to \gamma \gamma) = 2.26 \times 10^{-3}$

 $2b4\tau$ and $4b2\gamma$ produce relatively few events even for large $\kappa_3 \gtrsim 4.5, \ \kappa_4 \gtrsim 30$

• Focus on 6b and $4b2\tau$ final states with 5 and 3 tagged b-quarks, respectively

Backgrounds:

<u>6b</u>: dominant QCD contributions (see also [Papaefstathiou, Robens, Xolocotzi`21]) <u>4b2</u> τ : $W^+W^-b\bar{b}b\bar{b}$, $Zb\bar{b}b\bar{b}$, $t\bar{t}(H \to \tau\tau)$, $t\bar{t}(H \to b\bar{b})$, $t\bar{t}(Z \to \tau\tau)$, $t\bar{t}(Z \to b\bar{b})$, $t\bar{t}t\bar{t}$

Event generation and pre-selection

- Events generated with MadGraph5_aMC@NLO
- Higgs states decayed with MadSpin

(conservative) background K-factor of 2

signal K-factor of 1.7 [Florian, Fabre, Mazzitelli`20]

Pre-selection cuts:

 $\begin{array}{ll} \mbox{Invariant mass of final states:} \gtrsim 350 \mbox{ GeV} \\ \mbox{At least one pair of tagged states with} \\ m_{ij} \in [110, 140] \\ \mbox{$p_T(b) > 30 \mbox{ GeV}$} \quad p_T(\tau) > 10 \mbox{ GeV} \\ |\eta(\tau)| < 2.5 \quad |\eta(b)| < 2.5 \end{array}$

Graph Neural Network

- Add nodes for tagged $b,\,\tau$ and Missing Transverse Momentum
- Consider combinations of *b*-quarks and τ with reconstructed four-momentum $(p_i + p_j)$
- If $m_{ij} \in [100, 150]$ (GeV) add extra node H_i
- Features for each node: $[p_T, \eta, \phi, m, PDGID]$

Dataset with signal &
$$\blacksquare$$
 GNN
background graphs **Converse** $E = \left\{ P(\mathbf{S}), P(\mathbf{B}_1), \dots, P(\mathbf{B}_N) \right\}$

- GNN trained on $(\kappa_3, \kappa_4) = (1,1)$ sample
- Signal regions selected with cuts on background scores

Graph Neural Network

• Consider combinations of *b*-quarks and τ with reconstructed four-momentum $(p_i + p_j)$

If $m \in [100, 150]$ (CoVA add ovtra pada

- **Assumption:** Same GNN efficiency for other values of (κ_3, κ_4)
- Flat optimistic 80% b-tagging and τ -tagging efficiency
- Significance: $Z = \sqrt{2\left((S+B)\ln\left(1+\frac{S}{B}\right) S\right)}$

from [Cowan, Cranmer, Gross, Vitells `10]

- GNN trained on $(\kappa_3, \kappa_4) = (1,1)$ sample
- Signal regions selected with cuts on background scores

Showered and reconstructed results 5*b*

- Showering and reconstruction of events: Pythia, FastJet, Rivet
- HL-LHC luminosity of 3/ab and ATLAS-CMS combined luminosity of 6/ab

Showered and reconstructed results $3b2\tau$

• $3b2\tau$ more complicated due to multiple backgrounds —

multi-class classification

- Train on backgrounds: $W^+W^-b\overline{b}b\overline{b}$, $Zb\overline{b}b\overline{b}$, $t\overline{t}(H \to \tau^+\tau^-)$
 - Impose cuts on NN scores to reduce backgrounds:

 $P[W^+W^-b\bar{b}b\bar{b}] < 0.03, \ P[Zb\bar{b}b\bar{b}] < 0.1, \ P[t\bar{t}(H \to b\bar{b})] < 0.3$

	$\sigma(\text{gen.})(\text{fb})$	$\sigma({ m sel.})({ m fb})$	$\sigma({ m NN})({ m fb})$
$tt(H \to \tau\tau)$	3.8	0.17	0.011
WWbbbb	31	4.6	8.1×10^{-3}
$tt(H \rightarrow bb)$	3.5	0.89	3.8×10^{-3}
Zbbbb	4.3	0.45	3.3×10^{-4}
$tt(Z \rightarrow bb)$	0.77	0.15	3.1×10^{-4}
$tt(Z \to \tau \tau)$	4.7	0.080	2.2×10^{-4}
tttt	0.38	0.091	2.1×10^{-4}

Showered and reconstructed results $3b2\tau$

• $3b2\tau$ more complicated due to multiple backgrounds •

multi-class classification

• Train on backgrounds: $W^+W^-b\overline{b}b\overline{b}$, $Zb\overline{b}b\overline{b}$, $t\overline{t}(H \to \tau^+\tau^-)$

Combined Results

- Assumption: No correlations
- Simplified combination of significances (Stouffer method)

$$Z_{\text{comb.}} = \frac{Z_{3b2\tau} + Z_{5b}}{\sqrt{2}}$$

<u>Combination</u> of further channels and improvements of <u>tagging/reconstruction</u> methods could enhance results further

DESY. Panagiotis Stylianou | DESY Theory Workshop 2023 | 27/09/23

17

Understanding the 'black box': NN interpretations

Which features are more important? Investigate with 'Integrated Gradients' method

- Tagged b-jets and τ nodes ordered by p_T
- 'Roughly' reconstructed Higgs nodes ordered by 'closeness' to 125 GeV
- p_T , E and PID more important than angular observables
- Higgs masses most important

Lepton Colliders

- Complete picture of $(\kappa_3, \kappa_4) \rightarrow$ lepton colliders?
- Inclusive $\ell \ell \to HHH + X$ analysis with $H \to b\bar{b}$
 - At least 5 tagged *b*-quarks with $p_T(b) > 30$ GeV
 - ► Tagging efficiency: 80 %

- Important: For high energies b-quarks are not only in the central part of detector → requires extended tagging capabilities
- Negligible background from other SM processes

Lepton Collider Results

- Poissonian analysis: $\mu_{up} = \frac{1}{2} F_{\chi^2}^{-1} \left[2(n+1); CL \right]$
- Results similar to other works with dedicated analyses for 1 and 3 TeV, e.g. [Maltoni, Pagani, Zhao `18]

DESY. Panagiotis Stylianou | DESY Theory Workshop 2023 | 27/09/23

HL-LHC vs. future lepton colliders

- HL-LHC can provide competitive results compared to $1\ {\rm TeV}$ collider
- High energy lepton collisions way more sensitive

DESY. Panagiotis Stylianou | DESY Theory Workshop 2023 | 27/09/23

BUT such machines

Conclusions

• If there is a sizeable deviation in κ_3 , an even larger deviation in κ_4 is not unreasonable sizeable κ_4 deviations allowed by unitarity

- **<u>GNNs</u>** provide enhanced results at HL-LHC
 - HL-LHC should be able to probe regions allowed by unitarity
 - HHH not powerful enough to constrain κ_3 as well as di-Higgs bounds

BUT can provide complementary information and be used in combination with di-Higgs

HL-LHC competitive with 1 TeV lepton colliders but higher energies more sensitive

Backup

[ATLAS 2211.01216]

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1\sigma}_{-1\sigma}$
HH combination	$-0.6 < \kappa_\lambda < 6.6$	$-2.1 < \kappa_\lambda < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$
Single- <i>H</i> combination	$-4.0 < \kappa_\lambda < 10.3$	$-5.2 < \kappa_\lambda < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
HH+H combination	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_\lambda < 7.5$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t floating	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t , κ_V , κ_b , κ_τ floating	$-1.3 < \kappa_\lambda < 6.1$	$-2.1 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$

Two-Higgs Doublet Model (2HDM)

• Two-Higgs Doublet Model (2HDM) \rightarrow a second doublet: $\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \rho_1 + i\eta_1) \end{pmatrix}, \ \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \rho_2 + i\eta_2) \end{pmatrix}$

$$V_{2\text{HDM}} = m_{11}^2 (\Phi_1^{\dagger} \Phi_1) + m_{22}^2 (\Phi_2^{\dagger} \Phi_2) - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{\lambda_5}{2} \left((\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2 \right)$$

• Free parameters: $m_H, m_{H'}, m_A, m_{H^{\pm}}, m_{12}^2, v, \cos(\beta - \alpha), \tan\beta$

Scalar Particle content:Neutral scalars: H', $H(m_H = 125 \text{ GeV})$ Neutral pseudoscalars: ACharged scalars: H^{\pm}

Alignment limit \rightarrow couplings of light Higgs same as SM $\cos(\beta - \alpha) = 0$

Model example: 2HDM - calculation

• 1-loop calculation for κ_3 , κ_4 with FeynArts, FormCalc, LoopTools in alignment limit

Edge Convolution

Input features: $\vec{x}_{i}^{(0)} \rightarrow$ update iteratively with **Edge Convolution** operation:

Edge Convolution operation

Graph Embedding

- Fully-connected nodes for b and τ final states
- **Input features**: $[p_T, \eta, \phi, E, m, PDGID]$
 - Additional node for Missing Transverse Momentum (MTM) in showered & reconstructed events

- Consider combinations of *b*-quarks and τ with reconstructed four-momentum
- 2.
- $(p_i + p_i)$
- If $m_{ii} \in [100, 150]$ (GeV) add extra node H_i

RN: Reconstructed Nodes

Embedding performance

Dataset with signal & \blacksquare **GNN** background graphs **Calculate Converses** \bullet $\left\{ P(\mathbf{S}), P(\mathbf{B}_1), \ldots, P(\mathbf{B}_N) \right\}$

- GNN trained on $(\kappa_3, \kappa_4) = (1,1)$ sample
- Evaluate performance with Receiver Operating Characteristic (ROC) curves

Training loss and accuracy

Score distributions

DESY. Panagiotis Stylianou | DESY Theory Workshop 2023 | 27/09/23

Integrated Gradients

- \rightarrow Integrated Gradients: [Sundararajan, Taly, Yan 1703.01365]
 - axiomatic method
 - uses Neural Network gradients \rightarrow **fast!**
 - suitable for requires a differentiable model **Neural Networks!**
 - input baseline Definition: $I_{i}(x) = (x_{i} - x_{i}') \int_{0}^{1} d\alpha \frac{\partial F(x' + \alpha(x - x'))}{\partial x_{i}}$ Gradient of Neural Attribution scores Network F \rightarrow importance of feature
- Easy to implement for Graph Neural Networks as well

Does **not** take into account graph structures

work in progress in Deep Learning community

Viable to understand important features

expect mass of reconstructed Higgs to be important

• <u>Axioms:</u>

- <u>Completeness</u>: sum of attributions equal to difference of network output for input and baseline values
- <u>Sensitivity</u>: when baseline and input have different values and different NN outputs, attributions should also be different
- **Dummy**: A zero input should yield no attribution
- Implementation Invariance: If two methods are equivalent (i.e. yield same scores for all inputs despite being different) then attributions should be identical
- **Linearity**: Attributions should be linear for linear combinations of networks $aF_1 + bF_2$
- **<u>Symmetry</u>**: For a network symmetric for two variables F(x, y) = F(y, x), the attributions should be the same

Reconstructed Higgs Mass

- Interpretation as expected: If a Higgs close to 125 GeV can be found \implies signal
- Complete understanding would require to study correlations between observables → <u>future work</u>

Attribution vs. nodes

- E and p_T from leading order particles is more important
- *m* is more important for the reconstructed Higgs closest to the SM mass value

Lepton collider cross sections

- Inclusive $\ell \ell \to HHH + X$ analysis with $H \to b\bar{b}$
- Cross sections small below 1 TeV
- Note: $\mu^+\mu^-$ vs. e^+e^- collider at 10 TeV has difference of less than 5 % on cross sections

