

Dynamische Re - Konfiguration eines FPGAs mittels internem Kontroller

SEI - Tagung an der GSI Frühjahr 2011

Quelle: Bild: ESA – Erprobungssatelliten im Weltall

Überblick

- Einleitung
 - Motivation und Stand der Technik
- Realisierung
 - Dynamische Re Konfiguration des FPGAs
 - SelectMAP
 - ICAP

• Ergebnisse und Ausblick

DSPS (Digitale Signalverarbeitungssysteme)

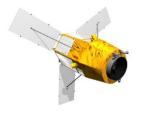
JÜLICH FORSCHUNGSZENTRUM

Wir entwickeln und erstellen umfassende elektronische Systeme und Lösungen für wissenschaftliche Instrumente, wobei Signal- und Bildgebende Systeme auf fliegenden Trägern im Vordergrund stehen.

Projekte:

GLORIA: Ziel ist es erstmals ein detailliertes

globales Bild des Tropopausen-

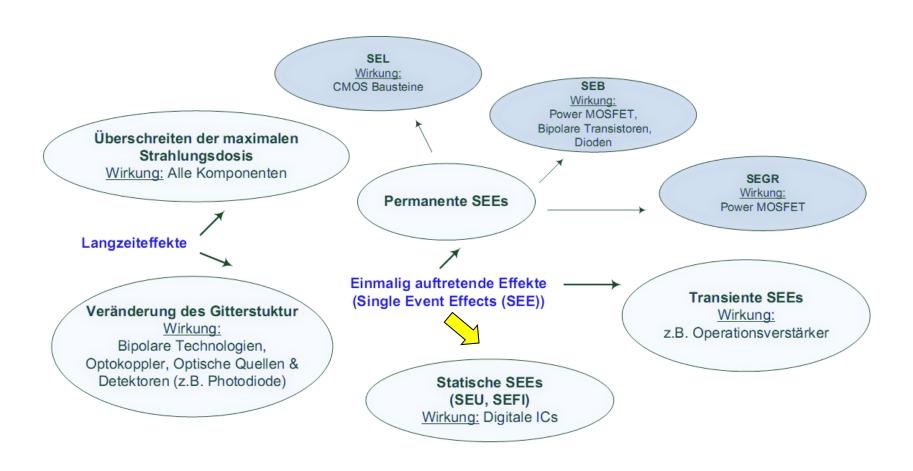

bereichs zu liefern.

Kompsat-3A: Entwicklung einer Infrarot Detektor

Ausleseelektronik zum Einsatz auf

einem Satelliten.

Was muss beachtet werden um Elektronik im Weltraum einzusetzen?


Randbedingungen und Störeinflüsse im Weltraum

- Vibrationen und Beschleunigungen bei der Startphase der Trägerrakete
- Temperaturschwankungen (120 C bis -80 C) aufgrund von Sonnen- und Schattenzyklen im Orbit
- Vakuum (Problem: z.B. Aufplatzen von Kondensatoren, Abführen von thermischer Energie)
- 100%ige Funktion → eingeschränkter Zugriff von der Bodenstation
- Höhere Strahlungsmengen im Vergleich zu Erde (hoch energetische Teilchenstrahlung)

Wie wirkt die Teilchenstrahlung auf die Elektronik?

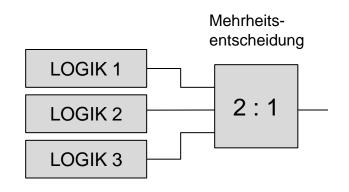
Einleitung: Effekte durch Teilchenstrahlung

Wie oft tritt ein SEU auf?

Quelle: Joshua D. Engel, Michael J. Wirthlin, Keith S. Morgan, Paul S. Graham, ed., Predicting On-Orbit Static Single event Upset rates in Xilinx Virtex FPGAs, Los Alamos National Laboratory, 2006. LA-UR-06-8178.

Einleitung: Auftrittswahrscheinlichkeit von SEUs

Beispiel eines Virtex-II (2V6000) FPGAs


Orbit	Altitude (km)	Inclination (degrees)	Upset Rate (SEU/device/day)	MTBF (Time/Event)
LEO	400	51.6°	0.67	1.5 days
LEO	800	22.0°	9	2.7 hrs
Polar	833	98.7°	6	4 hrs
Const.	1,200	65.0°	25	58 min
GEO	36,000	0.0°	0.47	2.1 days

Quelle: XILINX- Defense & Aerospace Presentation - www.xilinx.com/publications/prod_mktg/MilAero.pdf

Einleitung: Stand der Technik

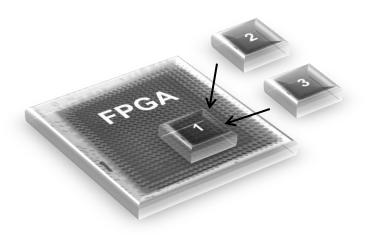
- Einsatz von Strahlungsfesten Bauteilen
 - Teuer
 - Evtl. Qualifikation von Bauteilen erforderlich
- TMR Triple Module Redundancy
 - Dreifache Implementierung der FPGA Logik
 - Mehrheitsentscheider an den Ausgängen
 - Fängt nur ein SEU auf

Aktuelle Lösungsansätze:

- Sicherung der FPGA Konfiguration
 - → Periodisches Auffrischen der Konfiguration

Realisierung

Realisierung: Dynamische Re - Konfiguration


Was gibt es für Re – Konfigurationstechniken?

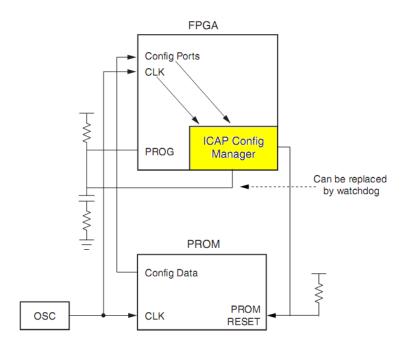
Partielle dynamische Re - Konfiguration

Komplette dynamische Re - Konfiguration

=> Komplette dynamische Re - Konfiguration

Realisierung: Externe / Interner Konfigurationskontroller

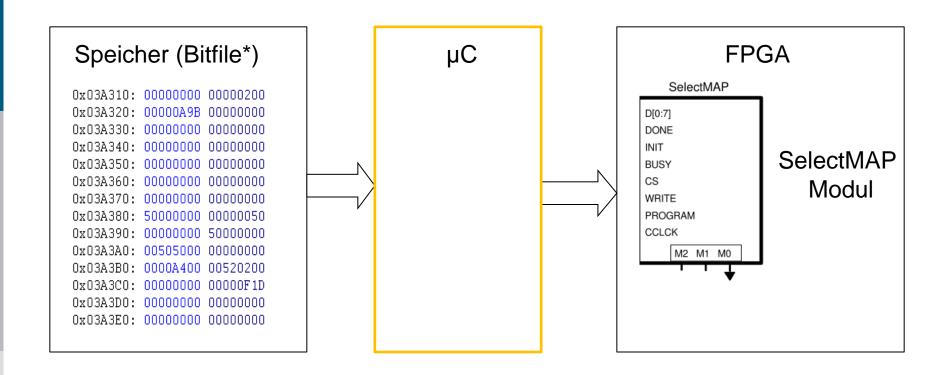
Mögliche Schnittstelle


SelectMAP Schnittstelle

ICAP Schnittstelle

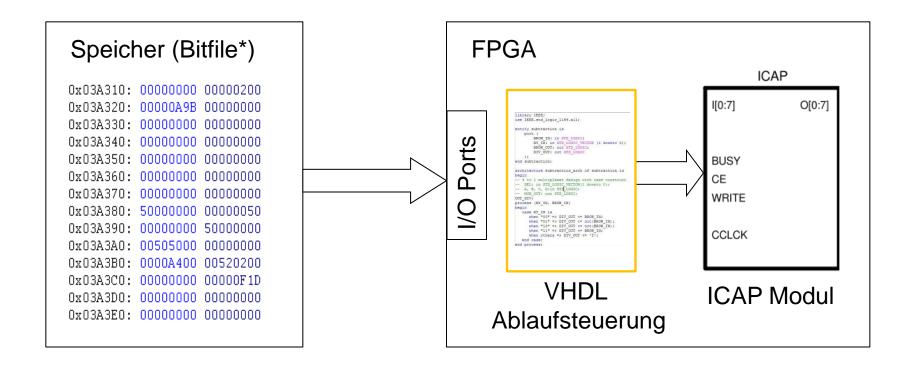
Externe Konfiguration (ext. µC)

Xilinx XQR18V04 Xilinx QPro Radiation-Tolerant **XQR17V16** Virtex-II FPGA Radiation-Hardened DATA[0:7] DATA[0:7] Configuration **CCLK CCLK** Controller CF PROG B CE RDWR B OE/RESET_B CS B DONE INIT_B BUSY


Interner Konfigurationskontroller

Quelle: XILINX- Carl Carmichael, Chen Wei Tseng - XAPP989 - Correcting Single-Event Upsets with a Self-Hosting Configuration Management Core 21.Februar 2011 Folie 10

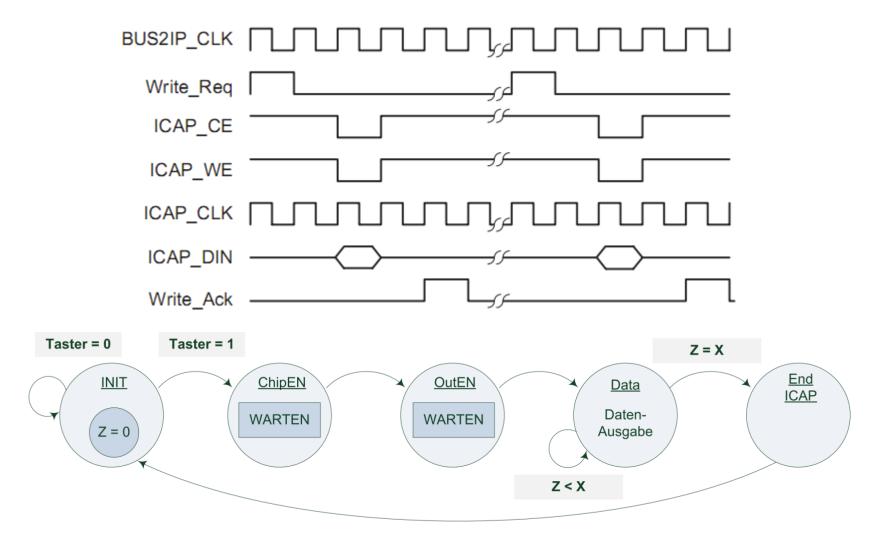
Realisierung: Re – Konfiguration mittels µC & SelectMAP JÜLICH



Nachteil:

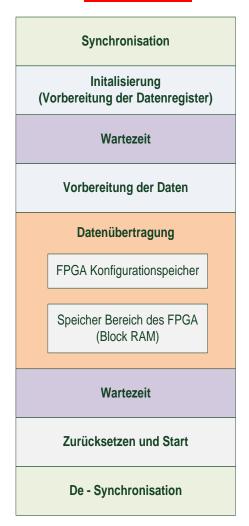
externer µC → Anfällig gegen Störeinflüsse

Realisierung: VHDL Statemachine fürs ICAP

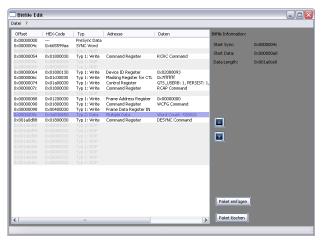


Folie 12

Realisierung: VHDL Statemachine fürs ICAP



Quelle Bild (oben): XILINX - Vince Eck, Punit Kalra, Rick LeBlanc, and Jim McManus – XAPP662 - In-Circuit Partial Reconfiguration of RocketIO Attributes


Realisierung: Bearbeitung der Binärdatei

<u>Binärdatei</u>

Bearbeitung

Binärdatei*

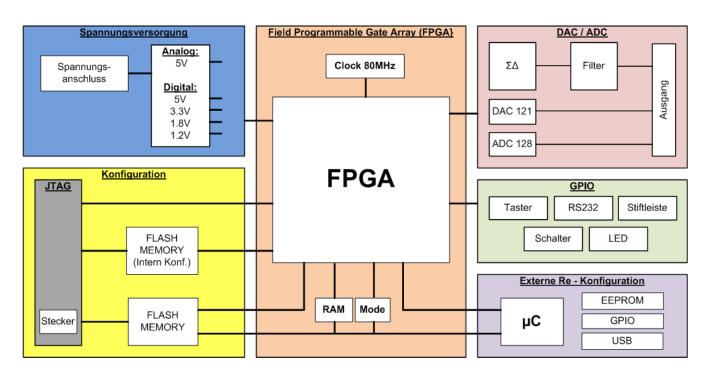
Realisierung: Vorbereitung der SEU Tests

Texteditor

1. Binärdatei (Lauflicht "links.bit")

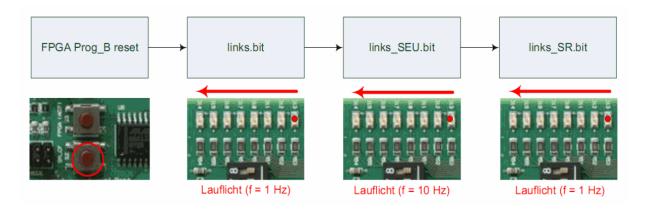
2. Binärdatei*
(Für die Re – Konfiguration "links_SR.bit")

3. Binärdatei_SEU ("links_SEU")

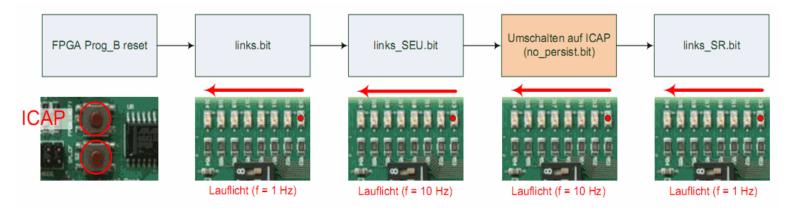

```
        0x03A310:
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
        00000000
```


Testumgebung

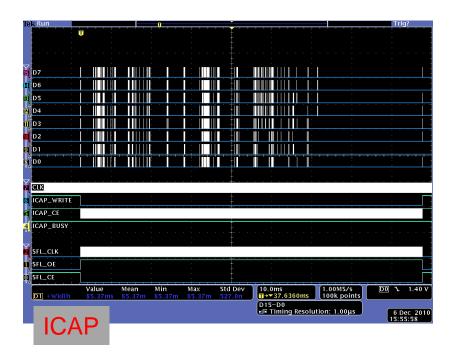
Realisierung: Aufbau der Testumgebung



Messergebnisse


Messergebnisse: Test "LAUFLICHT"

SelectMAP:


ICAP:

Messergebnisse: Dynamische Re - Konfigurierung

<u>SelectMAP Schnittstelle:</u>

Externer Mikrokontroller → Speicher Beschränkung → Übertragung von mehreren Paketen → Übertragung im Bereich von mehreren Sekunden

ICAP Schnittstelle:

Interner Ablaufsteuerung → Re - Konfiguration im Bereich von 85ms

Zusammenfassung & Ausblick

Zusammenfassung und Ausblick:

Neue Sicherungstechnologien zum Einsatz eines FPGA im Weltraum wurden erarbeitet:

- Re Konfiguration mittels ICAP
 - → Ablaufsteuerung für die ICAP Schnittstelle
 - → Softwareoberfläche zur Bearbeitung der Binärdateien
 - → Kein externer Mikrocontroller notwendig
 - → Dynamische Re Konfiguration in ca. 85ms
 - → Ausblick: Implementierung der ICAP Ablaufsteuerung in TMR Technik
 - Erweiterung der Software für den Einsatz von Virtex 5 FPGA Bausteinen (Xilinx)

Abschließend möchte ich mich bei Herrn Jano Gebelein und Herrn Norbert Abel von der Universität Heidelberg für die Unterstützung, bei der Anpassung der Binärdatein, bedanken.

Vielen Dank für Ihre Aufmerksamkeit!

Haben Sie noch Fragen?

m.dick@fz-juelich.de