# Basics 2: Distributions, Expectation Values, Moments and Hypothesis Testing

### Roger Barlow The University of Huddersfield

Terascale Statistics School, DESY, Hamburg

3<sup>rd</sup> July 2023



## The Binomial Distribution

For N trials, each with probability p of success, the probability of r successes is

$$P(r; N, p) = \frac{N!}{r!(N-r)!}p^{r}(1-p)^{N-r} = {}_{N}C_{r}p^{r}q^{N-r}$$

Proof by simple counting Mean  $\mu = Np$ , standard deviation  $\sigma = \sqrt{Npq}$ **Example:**s

- Tossing coins
- Pass/fail of components
- Hits in tracking chambers
- Particle ID

Basic, very simple, not particularly useful



### The Poisson Distribution

Probability of r events occurring in some interval with a constant probability and average  $\mu$ 

$$\mathsf{P}(\mathsf{r};\mu) = \mathsf{e}^{-\mu} rac{\mu^{\mathsf{r}}}{\mathsf{r}!}$$

Proof by taking the limit of the binomial  $N \to \infty, r \to 0$  with  $Nr = \mu$  Examples

- Geiger counter clicks
- Cavalrymen kicked to death by their horses
- numbers of events
- Histogram bin contents

Quite common. Key fact is  $\sigma = \sqrt{\mu}$ 

## The Gaussian Distribution

### Probabilities and pdfs (Probability Density Functions)

For continuous as opposed to integer variables you need to use probability density functions: P(x) rather than P(r)P(x) has dimensions  $[x]^{-1}$ .  $\int P dx$  is a dimensionless probability

$$G(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(x-\mu)^2/\sigma^2}$$

Also known as the Normal Distribution All Gaussians related to the unit Gaussian G(x; 0, 1) by simple shift and scale 68% probability content within  $\pm \sigma$ , 95% within  $\pm 2\sigma$ , etc



Very widespread due to the Central Limit Theorem: All distributions become Gaussian at large N

### The CLT: a demonstration



Samplings from the sum of *N* uniform distributions

Given some probability function P(r) or probability distribution function P(x), the Expectation value of some function f(x) is the appropriate sum or integral

$$\langle f \rangle = \sum_{r} f(r)P(r)$$
 or  $\int f(x)P(x) dx$ 

Also written E(f) in some texts

It's the average f you would expect after many samplings (like in quantum mechanics)

### Moments

Mean  $\mu = \langle x \rangle$ 

Variance  $V = \langle (x - \mu)^2 \rangle = \langle x^2 \rangle - 2 \langle x \rangle \mu + \langle x \rangle^2 = \langle x^2 \rangle - \langle x \rangle^2$ Second Central Moment Standard deviation  $\sigma = \sqrt{V}$ Note no  $\sqrt{N/(N-1)}$  factor involved here.

Skew 
$$\gamma = <(x-\mu)^3> =  -3 < x^2> \mu + 2\mu^3$$
 Often quoted as  $\gamma/\sigma^3$ 

Kurtosis.  $\frac{\langle (x-\mu)^4 \rangle}{\sigma^4} - 3$ 0 for a Gaussian Also for several variables  $cov_{xy} = \langle xy \rangle - \langle x \rangle \langle y \rangle$  and  $\rho_{xy} = cov_{xy}/\sigma_x \sigma_y$ 

# The CLT: Proof

Consider the Characteristic Function  $\langle e^{ikx} \rangle = \int e^{ikx} P(x) dx = \tilde{P}(k)$ Can be expanded as  $1 + ik \langle x \rangle + \frac{(ik)^2}{2!} \langle x^2 \rangle + \frac{(ik)^3}{3!} \langle x^3 \rangle \dots$ Take the logarithm and use  $\ln(1 + z) = z - \frac{z^2}{2} + \frac{z^3}{3} \dots$ 

This gives you a power series in *ik* where the coefficient  $K_r$  of each  $\frac{(ik)^r}{r!}$  is made from expectation values of x with total power r  $K_1 = \langle x \rangle, K_2 = \langle x^2 \rangle - \langle x \rangle^2, K_3 = \langle x^3 \rangle - 3 \langle x^2 \rangle \langle x \rangle + 2 \langle x \rangle^3 \dots$ 

These are the semi-invariant cumulants of Thièle:

- Change in location changes only  $K_1$
- Change in scale  $x \to Ax$  gives  $K_r \to A^r K_r$

CLT: if a function is convoluted with itself N times:

- Fourier transforms multiply

- Logarithms of Fourier transforms add
- $K_r \rightarrow NK_r$

Scaling this to unit standard deviation divide by  $\sqrt{NK_2}$  $K_r \rightarrow NK_r/(NK_2)^{r/2} \propto N^{1-r/2}$ :  $K_r \rightarrow 0$  as  $N \rightarrow \infty$  for r > 2Log of FT is a quadratic: FT is Gaussian : Function is Gaussian. QED

### What is it?

Making decisions based on statistical information

- Is this particle a pion or a kaon?
- Is this event signal or background?
- Is this patient sick or well?
- Is the accused innocent or guilty?

May be a one-off or may be one of a (large) series Decision has to be yes or no. May be altered later if more info available Very important part of machine learning

## Basic Ideas and Notation

Suppose you want to select pions and reject kaons. The expected dE/dx measurement for pions is Gaussian with mean 5.0 and standard deviation 1.0 (in some units). For Kaons it has a mean of 8.0 and a standard deviation of 2.0.



There is a trade-off between efficiency and purity. For any cut:  $\alpha$  is the probability for a Type I error- wrongly rejecting a true hypothesis  $\beta$  is the probability of a Type II error- wrongly accepting a false hypothesis. *Think carefully about what these probabilities mean* 

Where should you put the cut? You can't say. You also need to know

- The relative numbers of pions and kaons in the data
- I the cost (or penalty) of Type I and Type II errors

#### Lemma

For a given  $\alpha$  the acceptance region which minimises  $\beta$  is a region where  $P_0(x)/P_1(x)$  exceeds some threshold, where  $P_0$  and  $P_1$  are the pdfs for the desired hypothesis and the undesired alternative.

#### Proof.

Obvious. Given a N-P acceptance region, if some  $\Delta$  at x is removed, it must be replaced by a  $\Delta' = \Delta P_0(x)/P_0(x')$  for which, by hypothesis,  $\Delta' P_1(x')$  is larger than  $\Delta P_1(x)$ .

In a case like this you would want two cuts, to reject very low values as well as very high values. Neyman Pearson tells you how those two cuts are related: they should be at the same values of  $P_0/P_1$ . Even with complicated topologies in more than one dimension,  $P_0/P_1$  is the only relevant quantity to cut on.



# The null hypothesis $H_0$

To use data to support a theory, you have to show not just that the data is compatible with the theory, but that they are incompatible with the absence of the theory

- To discover the Higgs, have to show that the peak is unlikely to arise from pure background
- To show a treatment cures patients, have to show that without it they do not recover
- To establish Einstein's theory of gravity, needed data incompatible with Newton's theory

Null hypothesis  $H_0$ : there is no effect.

To build credibility for some alternative  $H_1$  you have to try to establish  $H_0$  and fail

Your analysis to support  $H_1$  is, on the face of it, an analysis to support  $H_0$ 'Every experiment is just giving the data a chance to disprove the null hypothesis' – Ronald Fisher

## Significance and power

Technical terms, better not to think about their meaning

In the language of the null hypothesis  $\alpha$  is the probability that you will (wrongly) claim a result

 $\alpha$  is called the *significance*. The probability under  $H_0$  of seeing an effect this large (or larger).

Many fields publish only if significance below 5%. (1 in 20 chance that this could be a fluctuation)

Particle physics much more stringent: 0.0032% is 'evidence for' and 0.00003% is 'a discovery' (These correspond to 4 sigma and 5 sigma Gaussian deviations.)

#### Why so strict?

Because we've made mistakes in the past and want to avoid embarrasments in future

 $1 - \beta$  is sometimes called the power of the test. Actually most of the null hypothesis procedures do not involve  $H_1$  - except for deciding whether to use a 1-sided or 2-sided test

Many of you are, or will be, engaged in analyses to find new phenomena by attacking  $H_0$  - in the form of the standard model

If you succeed, this will bring you fame and perhaps a Nobel prize

If you don't succeed, this will bring you a very solid, worthwhile and satisfactory journal publication and/or PhD thesis