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Prediction
(Hypothesis 1)

Prediction
(Hypothesis 0)

What have we learned?

Now?
Does the data favour H1?

We can’t say unless we know the uncertainty
(confidence intervals)!



90% CL

Start with a simple question o

045

We know a true value x and the
corresponding pdf, and we want to know
in which interval a certain amount of
measurements x; will fall.

04
03s
03

02s

The value of the measurement f(i lies in
the interval [X-, X+] in “CL” % of the time.

0.1s

0.1

0.05

TI]I]]]II]IIIIIITIIIIIII]]III]ITIIITIIIIIIIIIIIII

Corresponds to the statement “‘the o 7 N
interval [X-, X+] has CL% confidence level” X_ X4 measurement X;

X4

p(X_>x; > X ) = f(x)dr = CL
X _



In a real experiment, x is unknown - need to estimate it

® Gaussian distributed estimator, cumulative probability (CLT):

z 1 (2' — x)*
G (2 2) = da’
(T, x,0%) /_OO N exp ( 2o ) x

with X being the measured value and Ox the standard deviation
(resolution) of the measurement

® Confidence interval [a,b] can be obtained through solving

A

X T —a
a:l—G(ZIj,a,O’@):l—¢< ) lower CL is |—a

oFy

5:G(fab70§:):¢<§:_a> upper CLis -3

oF




Gaussian Case

We obtain
1-y ®-1(1-y)
a4 =T — Uﬁ;qb_l(l =) ®-lare quantiles: 06827 | 1
—t+oz0 (1 -8 09544 | . 2
0.9973 3

Results in the typical “10 error bar’:

<
o
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[aa b] — [x — O34, X O-)’é] S
-
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o
o
| 68.2% |
. 95.4%
> Note: : -

e More complicated if 6; is unknown, have to rely on 65

e If X does not follow a Gaussian pdf

Roman Kogler Terascale Statistics School July 2023



* Parameter |in estimated from data sample X, errors 0| and 0
(example: fitting procedure)

* The data follow a probability density p(x|H) with given value of
parameter [ (fixed, true)

* The result Um-01*92 determines an interval [Um—0|, kmt+02]
(the region between error bars).

* What ist the coverage probability of the interval? (short: coverage)



* Parameter |in estimated from data sample X, errors 0| and 0
(example: fitting procedure)

* The data follow a probability density p(x|H) with given value of
parameter [ (fixed, true)

* The result Um-01*92 determines an interval [Um—0|, kmt+02]
(the region between error bars).

* What ist the coverage probability of the interval? (short: coverage)

* Coverage C(|) is a function of the (unknown) parameter |, defined
as the probability that, with um = [U(n), O = Oi(n) and 02 = 02(n)

Un — O S U< Um + O2

C(M) is the probability that an experiment will obtain an interval that
includes, or “covers”, the true value L.

Frequentist require C(J1) = Co or at least C(|1) = Co with
Co = 0.6827, corresponding to 10 of a Gaussian distribution



* The origin of a statistical error in particle physics is most often the
observation of Poisson distributed data.

* The probability of observing n events, if the mean value is |4,
is given by

pre

p(n, ) = ~

* nis a random variable and [ is fixed.

e There are several different methods for the error-bar scheme.

Joel G. Heinrich, Coverage of error bars for Poisson data,

(2003)


http://www-cdf.fnal.gov/physics/statistics/notes/cdf6438_coverage.pdf

* Best estimate of U: Observation n

* Calculate the uncertainty as Vn:

n — \/ﬁ < pu<n-+ \/ﬁ

e Common choice, motivated by Poisson distribution,
VVIH = i = Vi

e Study the results and implications in the exercise

e Serious undercoverage



Pearson’s Y2 Interval

* Pearson’s y2 is given by

X7 (1, ) =

(n — p)?

L4
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* Pearson’s y2 is given by

X (1, m) =

(n — p)?
L4

o After observing n events,

the estimate is obtained by
minimising 2,

i.e. Un = n with ¥2=10

e Uncertainties are obtained
from the interval such that

XQ(Uma n) <A

and we get

o1 = \/nA + A2/4 — A/2

O9 — \/nA

A2/4 + AJ2




Pearson’s Y2 Interval

* Pearson’s y2 is given by

(n — p)?
L4

o After observing n events,
the estimate is obtained by
minimising Y2,

X (k) =

i.e. Un = n with ¥2=10

e Uncertainties are obtained
from the interval such that

XQ(IUma n) <A

and we get

o1 = \/nA + A2/4 — A/2

09 — \/nA

A2/4

A/2
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Coverage (C) vs u: x> <0.1  (C —0.2482 as u — =)

many discontinuities, values between
O (no coverage) and | (overcoverage)
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Pearson’s Y2 Interval

Standard choice of

A =1.0

minimum coverage is
1/1.5=0.5518

obtained at U= |

mean value around 0.68

example:n = 6

then we would say
p=0675

but W is still unknown, it
could be close to one
we only know with

certainty C = 0.5518

0.4

0.3
0.2
0.1

0.0

Coverage (C) vs u: %<1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20””
(C — 0.6827 as pu — )
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Pearson’s Y2 Interval

Standard choice of

A=1.0

minimum coverage is

1/1.5=0.5518
obtained at U= |

mean value around 0.68

example:n = 6

then we would say
p=673

but W is still unknown, it
could be close to one
we only know with

certainty C =0.5518

0.4

0.3
0.2
0.1

0.0
o 1 2 3 4 5 6 7 8

Coverage (C) vs u: %<1

9 10 11 12 13 14 15 16 17 18 19 20 M
(C = 0.6827 as u — x)

undercoverage can be fixed by choosing

A = 1.5 but then the mean value is around
C = 0.78 (overestimation of uncertainties)
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e Error estimate based on
the value of the likelihood

(case of a maximum
likelihood fit)

—2In A(u,n) =
o[ — ) +nIn(n/p)

* With the uncertainty
defined by

—2InA(u,n) <A



Likelihood Intervals

e Error estimate based on
the value of the likelihood

(case of a maximum
likelihood fit)

—2In A(p,n) =
o[ — ) +nIn(n/p)

* With the uncertainty
defined by

—2InA(p,n) <A

e Minimum is 0.3033 in the
vicinity of 1= 0.5

O 7 T OO ST PO T T T T e —
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O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ™

Coverage (C) vs u: -2InA <1  (C — 0.6827 as @ — )

undercoverage can be fixed by choosing
A = 2.581, but then the mean value is
around C = 0.89 (even worse
overestimation of uncertainties)
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Frequentist’s Central Intervals

e Coverage achieved by the
frequentist’s 68.27% interval
choice:

n—1

—p K _
e Hu >1 Co
Kloo— 2
— K _

e Hu >1 Co
Kl — 2

k=0

@)

n+1

 Minimum coverage

guaranteed to be larger
than Co = 0.6827

e Coverage larger on average

 Special case for n = 0:

2
1 —-Ch

1< lIn
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Frequentist’s Central Intervals

e Coverage achieved by the
frequentist’s 68.27% interva
choice:

n—1

—p K _
e Hu >1 Co
Kloo— 2
— K _

e Hu >1 Co
Kl — 2

k=0

@)

n+1

 Minimum coverage

guaranteed to be larger
than Co = 0.6827

e Coverage larger on average

 Special case for n = 0:

2
1 —-Ch

1< lIn
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Coverage (C) vs u: Classical Central Intervals

9 10 11 12 13 14 15 16 17 18 19 20 ¥
(C = 0.6827 as u — x)

more complicated constructions possible,
but not widely used

exact coverage C([) = Co never possible
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Back to the original problem: Quote E

. g

confidence interval for true parameter u. o
Get confidence belt via Neyman = oaf
construction: :
1. Fora given true parameter u the r
distribution of x is known Ko

Neyman Construction

04

P Xelz—o,x+0|)=CL

so called “acceptance interval” 02

NFEEREEE N

Ce

X-O

X

X+0
measurement
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Back to the original problem: Quote
confidence interval for true parameter pu.

Neyman Construction

true value

Get confidence belt via Neyman 03
construction:

1.

2.

For a given true parameter u the

0.6

distribution of x is known H

04

For each u we calculate the mean x

0.2

1 l | | I L | I

|| I I 1 LI I 1

RN NN

e NN

X-O

X

X+0

measurement
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Neyman Construction

Back to the original problem: Quote
confidence interval for true parameter p.
Get confidence belt via Neyman
construction:

1. Fora given true parameter u the
distribution of x is known

For each u we calculate the mean x

3. Foreach yand a given CL we can
calculate X_and X,

true value

X-O X X+0

measurement
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Neyman Construction

Back to the original problem: Quote % -
confidence interval for true parameter y. 8 |
Get confidence belt via Neyman o8-
construction: il

1. Fora given true parameter u the
distribution of x is known

For each y we calculate the meanx  p (@

3. Foreach yuand a given CL we can 02l
calculate X_and X, I

4. For a measured x we can get the ol L] ""l)!'ll"l"l

confidence interval [u,, p] measurement

The confidence belt contains CL % of the expected measurements.

Meaning: If u would be u, (1) than the probability to observe x or less (x or
more) is CL/2 %. This is not a statement about u, but about X_and X..

(wrong: construct the confidence interval by a Gaussian around x)
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Ve observed k events, what are the CL limits on 1!

95% poisson upper 0.95 — Z P(r: ug)

limit (solve for [+)

r=k+l 95% Confidence intervals
k
(or equivalent): 0.05 = Z P(T; M+) observation | lower limit | upper limit
— 0 0 2.99
r=0
Poisson Confidence intervals | 0.05 4.74
8 2 0.35 6.29
95% poisson lower g, [~ ueeerimt
||m|t L—1 :‘3 - = lower limit 3 082 775
8wl 4 .37 9.15
0-95:ZP(7‘;M—)‘§ : 5 197 | 105
r=0 2 s : )
3 6 2.6l | 1.84
(or equivalent) tof 7 3.29 13.15
> : 8 3.98 14.43
0.00 = Z P(rip-) 9 4.69 5.7
r=k oL 10 5.43 16.96

measurement k



