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Interpretation of Data

What have we learned? 
Now? 
Does the data favour H1? 
We can’t say unless we know the uncertainty 
(confidence intervals)!
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Confidence Intervals

Corresponds to the statement “the  
interval [X−, X+] has CL% confidence level”

Start with a simple question

We know a true value x and the  
corresponding pdf, and we want to know 
in which interval a certain amount of  
measurements xi will fall.

The value of the measurement xi lies in 
the interval [X−, X+] in “CL” % of the time.

^

^

^xi
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• Gaussian distributed estimator, cumulative probability (CLT): 
 
 
 
with x being the measured value and σx the standard deviation 
(resolution) of the measurement

• Confidence interval [a,b] can be obtained through solving 
 
 

7

More Realistic Problem - Gaussian Case

In a real experiment, x is unknown - need to estimate it

G(x̂, x,�x̂) =

Z x̂

�1

1p
2⇡�x̂

exp

 
� (x0 � x)2

2�x̂

2
!
dx0

^

↵ = 1�G(x̂, a,�x̂) = 1� �

✓
x̂� a

�x̂

◆

� = G(x̂, b,�x̂) = �

✓
x̂� a

�x̂

◆
lower CL is 1−α

upper CL is 1−β
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We obtain

‣ Note:

• More complicated if  is unknown, have to rely on 

• If  does not follow a Gaussian pdf

σ ̂x ̂σ ̂x

̂x
8

Gaussian Case

a = x̂� �x̂�
�1(1� ↵)

b = x̂+ �x̂�
�1(1� �)

Φ−1 are quantiles:
1−γ Φ−1(1−γ)

0.6827 1
0.9544 2
0.9973 3

Results in the typical “1σ error bar”:

[a, b] = [ ̂x − σ ̂x, ̂x + σ ̂x]

www.muelaner.com
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Coverage of Uncertainties

• Parameter μm estimated from data sample x, errors σ1 and σ2  
(example: fitting procedure)

• The data follow a probability density p(x|μ) with given value of 
parameter μ (fixed, true)

• The result μm−σ1+σ2 determines an interval [μm−σ1, μm+σ2]  
(the region between error bars). 

• What ist the coverage probability of the interval? (short: coverage)
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Coverage of Uncertainties

• Parameter μm estimated from data sample x, errors σ1 and σ2  
(example: fitting procedure)

• The data follow a probability density p(x|μ) with given value of 
parameter μ (fixed, true)

• The result μm−σ1+σ2 determines an interval [μm−σ1, μm+σ2]  
(the region between error bars). 

• What ist the coverage probability of the interval? (short: coverage)

• Coverage C(μ) is a function of the (unknown) parameter μ, defined 
as the probability that, with μm ≡ μ(n), σ1 ≡ σ1(n) and σ2 ≡ σ2(n) 

C(μ) is the probability that an experiment will obtain an interval that 
includes, or “covers”, the true value μ.
Frequentist require C(μ) = C0 or at least C(μ) ≥ C0 with  
C0 = 0.6827, corresponding to 1σ of a Gaussian distribution

μm − σ1 ≤ μ ≤ μm + σ2
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Poisson Distributed Data

• The origin of a statistical error in particle physics is most often the 
observation of Poisson distributed data. 

• The probability of observing n events, if the mean value is μ,  
is given by 

• n is a random variable and μ is fixed. 

• There are several different methods for the error-bar scheme. 

Joel G. Heinrich, Coverage of error bars for Poisson data,  
CDF/MEMO/STATISTICS/PUBLIC/6438 (2003)

p(n, µ) =
µne�µ

n!

http://www-cdf.fnal.gov/physics/statistics/notes/cdf6438_coverage.pdf
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• Best estimate of μ: Observation n

• Calculate the uncertainty as √n:

• Common choice, motivated by Poisson distribution,

• Study the results and implications in the exercise 

• Serious undercoverage

11

 Choice of σ = √n

n�
p
n < µ < n+

p
n

V[x] = μ = n
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Pearson’s 𝜒2 Interval
• Pearson’s 𝜒2 is given by
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�2(µ, n) =
(n� µ)2

µ
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Pearson’s 𝜒2 Interval
• Pearson’s 𝜒2 is given by

Having observed n events, we obtain our central estimate V of the un-
known parameter µ by minimizing the �

2 with respect to µ, obtaining V = n.
For the error bars, we adopt the interval defined as the set of all µ such that
�

2(µ, n)  �. In the language of Minuit[3], these are MINOS errors, and �
is the Minuit ERRDEF parameter. The MINOS error bars are defined as the
change in parameter value (µ) required to increase the function value (�2)
by ERRDEF (�). In this simple example, the errors are

�1 =
q

n� + �2/4��/2 �2 =
q

n� + �2/4 + �/2

and we also have the useful relations �1�2 = n� and �2 � �1 = �. For
no observed events (n = 0), the above formulas still are valid, and we have
�1 = 0 and �2 = �.

The interval [µ1, µ2] that defines these error bars satisfies

µ1 = n + �/2�
q

n� + �2/4 µ2 = n + �/2 +
q

n� + �2/4

and µ1µ2 = n
2, and we wish to calculate the coverage of this interval. Note

that the size of the interval,
p

4n� + �2, grows steadily with the observed
number of events n. At this point in the discussion, it is useful to show a
plot of the coverage C(µ) for the case � = 0.1:
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�2(µm, n) < �

• After observing n events, 
the estimate is obtained by 
minimising 𝜒2,  
i.e. μm = n with 𝜒2 = 0

• Uncertainties are obtained 
from the interval such that 
 
 
and we get
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� = 0.1

many discontinuities, values between 
0 (no coverage) and 1 (overcoverage)
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�2(µm, n) < �

• After observing n events, 
the estimate is obtained by 
minimising 𝜒2,  
i.e. μm = n with 𝜒2 = 0

• Uncertainties are obtained 
from the interval such that 
 
 
and we get
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Pearson’s 𝜒2 Interval

• Standard choice of 

• minimum coverage is  
1/1.5 = 0.5518 
obtained at μ ≈ 1

• mean value around 0.68

• example: n = 6 
then we would say 
 
 
but μ is still unknown, it 
could be close to one 
we only know with 
certainty C ≥ 0.5518

� = 1.0

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
double chi2(double mu,int n) { return (n) ? (n-mu)*(n-mu)/mu : mu; }

int main(int argc, char* argv[]) {
const double mu = (argc>1) ? strtod(argv[1],NULL) : 0.0;
const double delta = (argc>2) ? strtod(argv[2],NULL) : 1.0;
double sum=0.0, p=exp(-mu);
int n;
for(n=0 ; p>0 ; p *= mu/(++n)) {
if( chi2(mu,n) <= delta )

sum += p;
else if(n>mu)

break;
}
printf("mu=%g delta=%g coverage=%g\n",mu,delta,sum);
return 0;

}

The following plot shows C(µ) for � = 1:
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� = 1, of course, is the physicist’s standard choice for 1� error bars. The
minimum value for C(µ) on this plot is 1.5e�1 = 0.5518, which is attained in

5

� = 1.0

µ = 6+3
�2
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� = 1, of course, is the physicist’s standard choice for 1� error bars. The
minimum value for C(µ) on this plot is 1.5e�1 = 0.5518, which is attained in

5

� = 1.0

µ = 6+3
�2

undercoverage can be fixed by choosing  
Δ = 1.5, but then the mean value is around 
C = 0.78 (overestimation of uncertainties)



Roman Kogler                      Terascale Statistics School                July 2023 14

Likelihood Intervals

• Error estimate based on 
the value of the likelihood 
(case of a maximum    
 likelihood fit)

• With the uncertainty 
defined by 

Comparing with the corresponding Pearson’s �
2 plot on page 5, it is inter-

esting that there the continuous coverage segments have a general negative
slope, while here the segments, although arranged in a similar pattern, have
a predominantly positive slope. Neither trend seems present in the �2 ln �

plot of page 10 in the next section, where the continuous segments tend to
center more closely about their peak location.

4 Likelihood Intervals

Instead of Pearson’s �
2, or Neyman’s modified �

02, we can also try error
intervals based on the value of the likelihood. Specifically, having observed
n events, we can use the error interval defined as the set of all µ such that
�2 ln �(µ, n)  �, where

�2 ln �(µ, n) = 2[(µ� n) + n ln(n/µ)]

is �2 times the log likelihood ratio4 of the Poisson distribution[6, 7]. This
is the quantity that is minimized when one does a maximum-likelihood fit
to the Poisson distribution. Once again, standard error bars correspond to
� = 1. The next plot shows the coverage for this case:

4
The likelihood ratio � = p(n, µ)/p(n, µbest), where µbest is the value of µ that max-

imizes p(n, µ) (n being treated as constant). Considered as a function of µ, � is simply

the likelihood renormalized so that the maximum value it can take is 1. In the Poisson

case, � = p(n, µ)/p(n, n). By definition, maximizing the likelihood (with respect to µ) is

equivalent to maximizing � or minimizing �2 ln�.
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�2 ln �(µ, n) = 2[(µ� n) + n ln(n/µ)]

is �2 times the log likelihood ratio4 of the Poisson distribution[6, 7]. This
is the quantity that is minimized when one does a maximum-likelihood fit
to the Poisson distribution. Once again, standard error bars correspond to
� = 1. The next plot shows the coverage for this case:

4
The likelihood ratio � = p(n, µ)/p(n, µbest), where µbest is the value of µ that max-

imizes p(n, µ) (n being treated as constant). Considered as a function of µ, � is simply

the likelihood renormalized so that the maximum value it can take is 1. In the Poisson

case, � = p(n, µ)/p(n, n). By definition, maximizing the likelihood (with respect to µ) is

equivalent to maximizing � or minimizing �2 ln�.

9
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Likelihood Intervals

• Error estimate based on 
the value of the likelihood 
(case of a maximum    
 likelihood fit)

• With the uncertainty 
defined by 
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Coverage (C) vs µ:  −2lnλ < 1      (C → 0.6827 as µ → ∞)

µ

C

The minimum coverage, 0.3033, occurs in the neighborhood of µ = 0.5. Sur-
prisingly5, this is worse than for � = 1 Pearson’s �

2 intervals. There are
no orphan coverage points—those present in the corresponding Pearson’s �

2

case (compare with the figure on page 5) have “gained weight”, and are
visible here as short segments.

If we ask again to what value we must increase � to obtain a minimum
coverage of 68.27%, this time the answer is � = 2.581. This is also clearly
worse than the corresponding Pearson’s �

2 case. The � = 2.581 plot is
shown here:

5
Reference [7] shows that, when the variance is the comparison criterion, �2 ln� is

superior to Pearson’s �2
in the Poisson case.

10

undercoverage can be fixed by choosing  
Δ = 2.581, but then the mean value is 

around C = 0.89 (even worse 
overestimation of uncertainties)

• Minimum is 0.3033 in the 
vicinity of μ = 0.5
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Frequentist’s Central Intervals

• Coverage achieved by the 
frequentist’s 68.27% interval 
choice:

• Minimum coverage 
guaranteed to be larger 
than C0 = 0.6827

• Coverage larger on average

• Special case for n = 0:
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Coverage (C) vs µ:  w < 1      (C → 0.6827 as µ → ∞)

µ

C

The coverage looks qualitatively similar to that of the �2 ln � case shown on
page 10.

6 Classical-Frequentist Central-Intervals

Since, from the frequentist point of view, none of the previous interval
schemes have adequate coverage at small µ, we next investigate the cov-
erage achieved by the “68.27%” (central) intervals of the classical frequentist
approach. The classical approach to Poisson frequentist intervals is described
in Ref. [11]. In this case, the (central) error interval for n observed events is
given by the set of all µ such that:

nX

k=0

e
�µ

µ
k

k!
� 1� C0

2
and

1X

k=n

e
�µ

µ
k

k!
� 1� C0

2

The interval for n = 0 is defined completely by

µ  ln
2

1� C0

12

n�1X

k=0

e�µµk

k!
� 1� C0

2
1X

n+1

e�µµk

k!
� 1� C0

2
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Frequentist’s Central Intervals

• Coverage achieved by the 
frequentist’s 68.27% interval 
choice:

• Minimum coverage 
guaranteed to be larger 
than C0 = 0.6827

• Coverage larger on average

• Special case for n = 0: more complicated constructions possible, 
but not widely used

exact coverage C(μ) = C0  never possible

since, when n = 0, the 2nd inequality, becoming 1 � 1�C0
2

, is true for all µ.
The corresponding coverage plot is shown here:
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The definition of these intervals is tailored so that the minimum coverage is
guaranteed to be � C0. The average overcoverage is worse here than for the
case of the unified intervals (see the figure on page 19) considered next. This
seems to be because conservatism is applied twice—there are two inequalities
that both need to be satisfied—while the unified approach leads to only a
single inequality.

7 Unified Intervals

We next investigate the coverage achieved by the “68.27%” intervals (zero
background) of the unified approach[12]. As in the classical frequentist ap-
proach, the unified intervals will guarantee that the minimum coverage is
� C0. The error interval for n observed events is given by the set of all µ

satisfying

U(µ, n) =
X

k2A(µ,n)

e
�µ

µ
k

k!
< C0
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Neyman Construction

Body Level One

‣ Body Level Two

• Body Level Three
- Body Level Four

- Body Level Five

P (X 2 [x� �, x+ �]) = CL

so called “acceptance interval”
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Neyman Construction

Body Level One

‣ Body Level Two

• Body Level Three
- Body Level Four

- Body Level Five
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Neyman Construction

Body Level One

‣ Body Level Two

• Body Level Three
- Body Level Four

- Body Level Five
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Neyman Construction

Body Level One

‣ Body Level Two

• Body Level Three
- Body Level Four

- Body Level Five

(wrong: construct the confidence interval by a Gaussian around x)
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Neyman Construction: Poisson Distribution

observation lower limit upper limit

0 0 2.99

1 0.05 4.74

2 0.35 6.29

3 0.82 7.75

4 1.37 9.15

5 1.97 10.5

6 2.61 11.84

7 3.29 13.15

8 3.98 14.43

9 4.69 15.7

10 5.43 16.96

95% Confidence intervals

95% poisson upper  
limit (solve for μ+)

0.95 =
1X

r=k+1

P (r;µ+)

95% poisson lower 
limit

0.95 =
k�1X

r=0

P (r;µ�)

(or equivalent)

0.05 =
1X

r=k

P (r;µ�)

(or equivalent): 0.05 =
kX

r=0

P (r;µ+)

We observed k events, what are the CL limits on μ?


