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What’s happening

You have a dataset {x1, x2, . . . xN}
and a pdf P(x , a) with unknown parameter(s) a

You want to know:

1 What is the value for a according to the data?

2 What is the error on that value?

3 Does the resulting P(x , a) actually describe the data?

This is called ‘estimation’ by statisticians and ‘fitting’ by physicists

Also applies when finding a property rather than a parameter, and then
sometimes when one has a parent population rather than a pdf
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General considerations

An Estimator is a function of all the xi which returns some value for a
Write â(x1, x2, . . . xN)
There is no ‘correct’ estimator. You would like an estimator to be

Consistent: â(x)→ a for N →∞
Unbiassed: 〈â〉 = a

Efficient: V (â) =
〈
â2
〉
− 〈â〉2 is small

Invariant under reparameterisation: f̂ (a) = f (â)

Convenient

But no estimator is perfect, and these requirements are self-contradictory
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Bias: a simple example

Suppose you want to estimate the mean µ ≡ 〈x〉 for some pdf, and you
choose µ̂ = x = 1

N

∑
i xi

Then 〈µ̂〉 = 1
N

∑
i 〈xi 〉 = 1

N

∑
i 〈x〉 = 〈x〉. Zero bias.

Suppose you want to estimate the variance V ≡
〈
x2
〉
− 〈x〉2 for some pdf,

and you choose V̂ = x2 − x2 = 1
N

∑
i x

2
i −

(
1
N

∑
i xi
)2

V̂ = N−1
N2

∑
i x

2
i −

1
N2

∑
i

∑
j 6=i xixj

Take expectation values.
〈
V̂
〉

= N−1
N

〈
x2
〉
− N(N−1)

N2 〈x〉2 = N−1
N V

The ‘obvious’ V̂ underestimates the true V .

This is understandable: a fluctuation drags the mean with it, so
variations are less
This can be corrected for (Bessel’s correction) by an N/(N − 1).
Many statistical calculators offer σn and σn−1

This correction cures the bias for V . Actually σ is still biassed. But
V is more useful.
Biasses are typically small and correctable
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Efficiency is limited
Fun algebra with the likelihood function

The Minimum Variance Bound (also called the Cramer-Rao bound)

If â is unbiassed (equivalent form exists if it isn’t)

V (â) ≥
〈(

∂ ln L
∂a

)2
〉−1

=
〈
−∂2 ln L

∂a2

〉−1

Start with

Differentiate
Chain rule

Unitarity∫
L(x ; a) dx = 1∫
∂L
∂a dx = 0∫
L∂ ln L

∂a dx = 0∗

No bias∫
â(x)L(x ; a) dx = a∫
â(x)∂L∂a dx = 1∫
â(x)L∂ ln L

∂a dx = 1

Multiply column 1 by a and subtract from column 2:
∫

(â− a)∂ ln L
∂a L dx = 1

Invoke Schwarz’ lemma
(∫

uv dx
)2 ≤

∫
u2 dx ×

∫
v2 dx

with u ≡ (â− a)
√
L, v ≡ ∂ ln L

∂a

√
L∫

(â− a)2L dx .×
∫ (

∂ ln L
∂a

)2
L dx ≥ 1

or
〈
(â− a)2

〉 〈(
∂ ln L
∂a

)2
〉
≥ 1

Finally, differentiate Eq. *:
〈(

∂ ln L
∂a

)2
〉

+
〈
∂2 ln L
∂a2

〉
= 0 (Fisher information)
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Maximum likelihood estimation

The ML estimator

To estimate a using data {x1, x2 . . . xN}, find the value(s) of a for which
the total log likelihood

∑
lnP(xi ; a) is maximised

3 types of problem

1 Differentiate, set to zero, solve the equation(s) algebraically
2 Differentiate, set to zero, solve the equation(s) numerically
3 Maximise numerically

Things to note

There is no deep justification for ML estimation, except that it works
well
These are not ’the most likely values’ of a. They are the values of a
for which the values of x are most likely
The logarithms make the total a sum, which is easier to handle than a
product
Remember a minus sign if you use a minimiser
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Maximum likelihood estimation

Consistent: Almost always

Unbiassed; It is biassed. But the bias usually falls like 1/N

Efficient: In the large N limit ML saturates the MVB, and you can’t
do better than that

Invariant under reparameterisation: clearly.

Convenient. Usually
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Simple Examples

{xi} have been gathered from a Gaussian of unknown µ and σ. What are
the ML estimates?
ln L =

∑
−1

2 ((xi − µ)/σ)2 − N ln(
√

2πσ)
Differentiating wrt µ and σ and setting to zero gives 2 equations∑

i (xi − µ̂)/σ̂2 = 0
∑

(xi − µ̂)2/σ̂3 − N/σ̂ = 0
which are happily decoupled and give
µ̂ = 1

N

∑
i xi , σ̂2 = 1

N

∑
(xi − µ̂)2 (!)

Suppose xi have been gathered from P(x ; a) = aS(x) + (1− a)B(x)
ln L =

∑
i ln(aS(xi ) + (1− a)B(xi ))

Differentiate and set to zero∑ S(xi )−B(xi )
âS(xi )+(1−â)B(xi )

= 0
Needs numerical solution
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Errors from ML

To first order, looking at the difference between the true a0 and the
estimated â
0 = ∂ ln L

∂a a=â = ∂ ln L
∂a a=a0 + (â− a0)∂

2 ln L
∂a2 a=a0

Deviations of â from a0 are due to deviations of ∂ ln L
∂a a=a0 from zero,

divided by the second derivative

V (â) = V (∂ ln L
∂a a=a0)/

(
∂2 ln L
∂a2 a=a0

)2
=
〈(

∂lnL
∂a

)2
〉

a=a0/
(
∂2 ln L
∂a2 a=a0

)2

Which is all very well, but we don’t know what a0 is...

Approximate by using the actual value of our â : V (â) = −
(
∂2 ln L
∂a2

)−1

Noter that this is the MVB (in this approximation). ML is efficient
So the error is given by the second derivative of the log likelihood

How to find the second derivative (one way anyway)

ln L(a) = ln L(â) + 1
2 (a− â)2 ∂2 ln L

∂a2 .... (first derivative is zero)

= ln L(â)− 1
2

(
a−â
σa

)2

At a = â± σa, ln L = ln L(â)− 1
2 . ∆ ln L = −1

2 gives the error
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ML errors

Simple errors
The interval [â− σa, â + σa] from the
∆ ln L = −1

2 points is a 68% central
confidence interval

Asymmetric errors (messy!)
If a monotonically reparameterised as
f (a), the ML estimate is f̂ = f (â).
[f (â−σa), f (â+σa)] = [f̂ −σ−f , f̂ +σ+

f ]
is the 68% central confidence region.
If ln L(a) not symmetric parabola,
assume this is what is happening and
quote separate σ+, σ−.
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ML errors
More than one parameter

For 2 (or more) unknown parameters
use same technique to map out 68%
(or whatever) confidence egions
Only difference is that ∆ ln L is
different.
Given by cumulative probability for
χ2 distribution with 2 (or whatever)
degrees of freedom
(Details on χ2 coming up)
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Fitting data points

Suppose your data is a set of xi , yi pairs with predictions yi = fi = f (xi ; a)
xi known precisely, yi measured with Gaussian errors σi

Usually one quantity can be precisely specified

The σi may all be the same. If so, the algebra is easier

The likelihood is the product of Gaussians 1
σi
√

2π
e−

1
2

((yi−f (xi ,a))/σi )
2

ln L = −1
2

∑
i (

yi−fi
σi

)2+boring constants

Introduce χ2 =
∑

i (
yi−f (xi ,a)

σi
)2

Maximum Likelihood → minimum χ2. (‘Method of Least Squares’)
If f is linear in a (e.g. f (x) = a1 + a2x + a3

√
x ) then this gives a set of

equations soluble in one step. If more complicated, need to iterate.
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Very simple example: the straight line fit

f (x) = a1 + a2x
Simple case: all σi the same

χ2 =
∑( yi−a1−a2xi

σ

)2

Differentiate and set to zero.
2 Equations∑

yi − a1 − a2xi = 0∑
xi (yi − a1 − a2xi ) = 0

Simple to unscramble by hand
First is a1 = y − a2x
Substitute in 2nd and get a2 = xy−x y

x2−x2

In more general cases, write these as matrices

Linear Regression

Such straight line fits are linked to the statistical modelling technique of
’linear regression’ . The formulæ are the same.
But there are subtle differences
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Goodness of fit

Does the model f (x ; a) provide a good description of the yi?
Näıvely each term in χ2 sum ≈ 1
More precisely:
p(χ2,N) = 1

2N/2Γ(N/2)
χN/2−1e−χ

2/2

Distribution as N dimensional
Gaussian, integrated over
hypersphere
Quantify by p-value: probability that,
if the model is true, χ2 would be this
large, or larger
(p-values apply for any test statistic.
Ties up with hypothesis testing. α
and p are the same but not the
same.)
Each fitted parameter reduces the effective number by 1. (A linear
constraint reduces the dimensionality of the hyperspace by 1).
Degrees of freedom ND = N − Nf
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Goodness of fit

Reasons for large χ2:

Bad theory

Bad data

Errors underestimated

Unsuspected negative correlation between data points (unlikely)

Bad luck

Reasons for large χ2:

Errors overestimated

Unsuspected positive correlation between data points (more likely)

Good luck

Although −1
2χ

2 is a log likelihood, −2 ln L is not a χ2. It tells you nothing
about goodness of fit.
(Wilks’ theorem says it does for differences in similar models. Useful for
comparisons but not absolute.)
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4 ways of fitting data

Full ML. Write down the likelihood and maximise
∑

j lnP(xj , a)
where j runs over all events. Slow for large data samples, and no
goodness of fit.

Binned ML. Put it in a histogram and maximise the log of the
Poisson probabilities

∑
i ni ln fi − fi where i runs over all bins

fi = NP(xi )w : don’t forget the bin width w . Quicker - but lose info
from any structure smaller than bin size

Put it in a histogram and minimise χ2 =
∑

i (ni − fi )
2/fi (Pearson’s

χ2). This assumes the Poisson distributions are approximated by
Gaussians so do not use if bin contents small . But you do get a
goodness of fit.

Put it in a histogram and minimise χ2 =
∑

i (ni − fi )
2/ni (Neyman’s

χ2). This makes the algebra and fitting a lot easier. But introduces
bias as downward fluctuations get more weight. And disaster if any
ni = 0

So there are many ways and they are not all equivalent: choose carefully!
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